Solveeit Logo

Question

Mathematics Question on Differential equations

Suppose the solution of the differential equation dydx=(2+α)xβy+2βx2αy(βγ4α)\frac{dy}{dx} = \frac{(2 + \alpha)x - \beta y + 2}{\beta x - 2\alpha y - (\beta \gamma - 4\alpha)}represents a circle passing through the origin. Then the radius of this circle is:

A

17\sqrt{17}

B

12\frac{1}{2}

C

172\frac{\sqrt{17}}{2}

D

2

Answer

172\frac{\sqrt{17}}{2}

Explanation

Solution

dydx=(2+α)xβy+2βxy(2α+β)+4α\frac{dy}{dx} = \frac{(2 + \alpha)x - \beta y + 2}{\beta x - y(2\alpha + \beta) + 4\alpha}

βxdy(2α+β)ydy+4αdy=(2+α)xdxβydx+2dx\beta xdy - (2\alpha + \beta)ydy + 4\alpha dy = (2 + \alpha)x dx - \beta ydx + 2dx

β(xdy+ydx)(2α+β)ydy+4αdy=(2+α)xdx+2dx\beta(xdy + ydx) - (2\alpha + \beta)ydy + 4\alpha dy = (2 + \alpha)x dx + 2dx

βxy(2α+β)y22+4αy=(2+α)x22\beta xy - \frac{(2\alpha + \beta)y^2}{2} + 4\alpha y = \frac{(2 + \alpha)x^2}{2}

    β=0for this to be a circle\implies \beta = 0 \quad \text{for this to be a circle}

(2+α)x22+αy2+2x4xy=0(2 + \alpha)\frac{x^2}{2} + \alpha y^2 + 2x - 4xy = 0

Coeff. of x2=y2    2+a=2a    α=2\text{Coeff. of } x^2 = y^2 \implies 2 + a = 2a \implies \alpha = 2

i.e., 2x2+2y2+2x8y=0\text{i.e., } 2x^2 + 2y^2 + 2x - 8y = 0

x2+y2+x4y=0x^2 + y^2 + x - 4y = 0

rd=14+4=172\text{rd} = \sqrt{\frac{1}{4} + 4} = \frac{\sqrt{17}}{2}