Question
Mathematics Question on Differential equations
Suppose the solution of the differential equation dxdy=βx−2αy−(βγ−4α)(2+α)x−βy+2represents a circle passing through the origin. Then the radius of this circle is:
A
17
B
21
C
217
D
2
Answer
217
Explanation
Solution
dxdy=βx−y(2α+β)+4α(2+α)x−βy+2
βxdy−(2α+β)ydy+4αdy=(2+α)xdx−βydx+2dx
β(xdy+ydx)−(2α+β)ydy+4αdy=(2+α)xdx+2dx
βxy−2(2α+β)y2+4αy=2(2+α)x2
⟹β=0for this to be a circle
(2+α)2x2+αy2+2x−4xy=0
Coeff. of x2=y2⟹2+a=2a⟹α=2
i.e., 2x2+2y2+2x−8y=0
x2+y2+x−4y=0
rd=41+4=217