Solveeit Logo

Question

Physics Question on Gravitation

Suppose the gravitational force varies inversely as the nthn^{th} power of distance. Then the time period of a planet in circular orbit of radius RR around the sun will be proportional to

A

R(n+12)R^{\left(\frac{n+1}{2}\right)}

B

R(n12)R^{\left(\frac{n-1}{2}\right)}

C

RnR^{n}

D

R(n22)R^{\left(\frac{n-2}{2}\right)}

Answer

R(n+12)R^{\left(\frac{n+1}{2}\right)}

Explanation

Solution

Gravitational force, F1rnF \propto \frac{1}{r^{n}}
F=krnF=\frac{k}{r^{n}} where kk is a constant.
For a planet, moving in a circular orbit of radius RR,
F=kRnF=\frac{k}{R^{n}}
But, F=mω2RF=m \omega^{2}R
kRn=mR(2πT)2\Rightarrow \frac{k}{R^{n}}= m R \cdot\left(\frac{2 \pi}{T}\right)^{2}
kRn+1=m(2π)2T2\Rightarrow \frac{k}{R^{n+1}}=\frac{m(2 \pi)^{2}}{T^{2}}
T2Rn+1\Rightarrow T^{2} \propto R^{n+1}
TRn+12\therefore T \propto R^{\frac{n+1}{2}}