Solveeit Logo

Question

Question: Suppose the gravitational force varies inversely as the n<sup>th</sup> power of distance. Then the t...

Suppose the gravitational force varies inversely as the nth power of distance. Then the time period of a planet in circular orbit of radius R around the sun will be proportional to –

A

R(n+12)R^{\left( \frac{n + 1}{2} \right)}

B

R(n12)R^{\left( \frac{n - 1}{2} \right)}

C

Rn

D

R(n22)R^{\left( \frac{n - 2}{2} \right)}

Answer

R(n+12)R^{\left( \frac{n + 1}{2} \right)}

Explanation

Solution

The required centripetal force is obtained from gravitational force

mv2R=GMmRn\frac{mv^{2}}{R} = \frac{GMm}{R^{n}} or v = GMRn1\sqrt{\frac{GM}{R^{n - 1}}}

Again, T =2πRv=2πRRn1GM\frac{2\pi R}{v} = 2\pi R\sqrt{\frac{R^{n - 1}}{GM}}

or T = 2pRn+1GM\sqrt{\frac{R^{n + 1}}{GM}} = 2pRn+12GM\frac{R^{\frac{n + 1}{2}}}{\sqrt{GM}} or T µ Rn+12R^{\frac{n + 1}{2}}