Solveeit Logo

Question

Question: Suppose the gravitational force varies inversely as the n<sup>th</sup> power of the distance. Then t...

Suppose the gravitational force varies inversely as the nth power of the distance. Then the time period of a planet in circular orbit of radius R around the sun will be proportional to :

A

Rn

B

R(n+1)/2

C

R(n–1)/2

D

R–n

Answer

R(n+1)/2

Explanation

Solution

T =

E = 12\frac { 1 } { 2 } mv2 = [2GMRn1]1/2\left[ \frac { 2 \mathrm { GM } } { \mathrm { R } ^ { \mathrm { n } - 1 } } \right] ^ { 1 / 2 }

\ T = 2πR2GM/Rn1=2π2GM\frac { 2 \pi \mathrm { R } } { \sqrt { 2 \mathrm { GM } / \mathrm { R } ^ { \mathrm { n } - 1 } } } = \frac { 2 \pi } { \sqrt { 2 \mathrm { GM } } } × R(n+1)/2

\ T µ R(n + 1)/2.