Solveeit Logo

Question

Question: Suppose that two objects A and B are moving with velocities \({\overrightarrow{v}}_{A}and{\overright...

Suppose that two objects A and B are moving with velocities vAandvB{\overrightarrow{v}}_{A}and{\overrightarrow{v}}_{B} (each with respect ot some common frame of reference). Let vAB{\overrightarrow{v}}_{AB}represent the velocity of A with respect to B. Then

A

vAB+vBA=0{\overrightarrow{v}}_{AB} + {\overrightarrow{v}}_{BA} = 0

B

vABvBA=0{\overrightarrow{v}}_{AB} - {\overrightarrow{v}}_{BA} = 0

C

vAB=vA+vB{\overrightarrow{v}}_{AB} = {\overrightarrow{v}}_{A} + {\overrightarrow{v}}_{B}

D

vABvBA|{\overrightarrow{v}}_{AB}| \neq |{\overrightarrow{v}}_{BA}|

Answer

vAB+vBA=0{\overrightarrow{v}}_{AB} + {\overrightarrow{v}}_{BA} = 0

Explanation

Solution

Velocity of object A relative to that of B is

vAB=vBvA{\overset{\rightarrow}{v}}_{AB} = {\overset{\rightarrow}{v}}_{B} - {\overset{\rightarrow}{v}}_{A}

vAB=vBA\therefore{\overset{\rightarrow}{v}}_{AB} = - {\overset{\rightarrow}{v}}_{BA}

And vAB=vBA\left| {\overset{\rightarrow}{v}}_{AB} \right| = \left| {\overset{\rightarrow}{v}}_{BA} \right|