Solveeit Logo

Question

Microeconomics Question on Consumer theory

Suppose that the utility function 𝑢:R+𝑛R+𝑢: R^𝑛_+→R_+ represents a complete, transitive and continuous preference relation over all bundles of 𝑛 goods. Then select the choices below in which the function also represents the same preference relation.

A

𝑓(𝑥1, 𝑥2, … , 𝑥𝑛 ) = 𝑢(𝑥1, 𝑥2, … , 𝑥𝑛 ) + (𝑢(𝑥1, 𝑥2, … , 𝑥𝑛 ))3

B

𝑔(𝑥1,𝑥2,,𝑥𝑛)=𝑢(𝑥1,𝑥2,,𝑥𝑛)+i=1n𝑥i𝑔(𝑥_1, 𝑥_2, … , 𝑥_𝑛 ) = 𝑢(𝑥_1, 𝑥_2, … , 𝑥_𝑛 ) + ∑^n_{i=1}𝑥_i

C

h(𝑥1,𝑥2,,𝑥𝑛)=(𝑢(𝑥1,𝑥2,,𝑥𝑛))1nℎ(𝑥_1, 𝑥_2, … , 𝑥_𝑛 ) = (𝑢(𝑥_1, 𝑥_2, … , 𝑥_𝑛 )) ^{\frac{1}{n}}

D

𝑚(𝑥1,𝑥2,,𝑥𝑛)=𝑢(𝑥1,𝑥2,,𝑥𝑛)+(𝑥12+𝑥22++𝑥n2)0.5𝑚(𝑥_1, 𝑥_2, … , 𝑥_𝑛 ) = 𝑢(𝑥_1, 𝑥_2, … , 𝑥_𝑛 ) + (𝑥^2_1 + 𝑥^2_2 + ⋯ + 𝑥^2_n ) ^{0.5}

Answer

𝑓(𝑥1, 𝑥2, … , 𝑥𝑛 ) = 𝑢(𝑥1, 𝑥2, … , 𝑥𝑛 ) + (𝑢(𝑥1, 𝑥2, … , 𝑥𝑛 ))3

Explanation

Solution

The correct options is (A): 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛 ) = 𝑢(𝑥1, 𝑥2, … , 𝑥𝑛 ) + (𝑢(𝑥1, 𝑥2, … , 𝑥𝑛 ))3 and (C): h(𝑥1,𝑥2,,𝑥𝑛)=(𝑢(𝑥1,𝑥2,,𝑥𝑛))1nℎ(𝑥_1, 𝑥_2, … , 𝑥_𝑛 ) = (𝑢(𝑥_1, 𝑥_2, … , 𝑥_𝑛 )) ^{\frac{1}{n}}