Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

Suppose that the side lengths of a triangle are three consecutive integers and one of the angles is twice another. The number of such triangles is/are

A

11

B

00

C

44

D

22

Answer

11

Explanation

Solution

Let B=2A\text{B}=2\text{A} and CD = aba+c\frac {ab}{a+c} & AD=bca+cAD = \frac {bc}{a+c} Now, ΔABCandΔBDC\Delta \text{ABC} \, and \, \Delta \text{BDC} are similar, so BCAC=CDBC(a)2=aba+cb?(b)2=a(a+c)\frac{\text{BC}}{\text{AC}} = \frac{\text{CD}}{\text{BC}} \Rightarrow \left(\text{a}\right)^{2} = \frac{\text{ab}}{\text{a} + \text{c}} \text{b} \, ? \, \left(\text{b}\right)^{2} = \text{a} \left(\text{a} + \text{c}\right) ......(i) Since, b>a\text{b} > \text{a} \, \, \Rightarrow Either b=a+1\text{b} = \text{a} + 1 or b=a+2,\text{b} = \text{a} + 2, if b=a+1,\text{b} = \text{a} + 1, then [From E(i)] (a+1)2=(a+c)ac=2+1a\left(\text{a} + 1\right)^{2} = \left(\text{a} + \text{c}\right) \text{a} \Rightarrow \text{c} = 2 + \frac{1}{\text{a}} c\text{c} is integer \Rightarrow a=1,b=2,c=3\text{a} = 1 , \text{b} = 2 , \text{c} = 3 but then, no triangle will form. If b=a+2,\text{b} = \text{a} + 2 , then obviously c=a+1,\text{c} = \text{a} + 1 , and then, [from E (i)] (a+2)2=a(2a+1)\left(\text{a} + 2\right)^{2}=\text{a}\left(2 \text{a} + 1\right) a23a4=0ora=4\Rightarrow \text{a}^{2}-3a-4=0 \, \, \text{or} \, \text{a}=4 a=4,b=6,c=5\therefore \, \, \text{a}=4, \, \text{b}=6,\text{c}=5 is the only possible solution.