Solveeit Logo

Question

Physics Question on Electromagnetic Waves

Suppose that the electric field amplitude of an electromagnetic wave is E0=120 N/CE_0 = 120 \ N/C and that its frequency is ν=50.0 MHzν = 50.0 \ MHz.

  1. Determine, B0, ω, k, and λ.
  2. Find expressions for E and B.
Answer

Electric field amplitude, E0=120 N/CE_0 = 120\ N/C
Frequency of source, ν=50.0 MHz=50×106Hzν = 50.0 \ MHz = 50 × 10^6 Hz
Speed of light, c=3×108m/sc = 3 × 10^8 m/s


(a) Magnitude of magnetic field strength is given as:

Bo=EocB_o =\frac { E_o}{c}

Bo=1203×108Bo = \frac {120}{3\times 10^8}

Bo=4×107TBo = 4 \times 10^{-7} T

Bo=400 nTB_o = 400 \ nT

Angular frequency of source is given as:
ω=2πν=2π×50×106ω = 2\piν = 2\pi × 50 × 10^6
ω=3.14×108rad/sω = 3.14 × 10^8 rad/s
Propagation constant is given as:

k=ωck = \frac {ω}{c}

k=3.14×1083×108k = \frac {3.14 \times 10^8}{3\times10^8}

k=1.05 rad/mk = 1.05 \ rad/m

Wavelength of wave is given as:

λ=cvλ = \frac cv

λ=3×10850×106λ =\frac { 3 \times 10^8}{50\times 10^6}

λ=6.0 mλ = 6.0 \ m


(b) Suppose the wave is propagating in the positive x direction. Then, the electric field vector will be in the positive y direction and the magnetic field vector will be in the positive z direction. This is because all three vectors are mutually perpendicular.
Equation of electric field vector is given as:
E=Eosin (kxωt)j^\vec E = E_o sin \ (kx-ωt)\hat j
E=120sin (1.05x3.14x108t)j^\vec E= 120 sin\ (1.05x - 3.14 x 10^8t)\hat j
And, magnetic field vector is given as:
B=Bosin (kxωt)k^\vec B = B_o sin \ (kx-ωt)\hat k
B=(4×107)sin (1.05x3.14×108t)k^\vec B = (4\times 10^{-7}) sin \ (1.05x - 3.14 \times 10^8t)\hat k