Question
Mathematics Question on Geometric Progression
Suppose sin2θ=cos3θ, here 0<θ<π2 then what is the value of cos2θ?
A
(A) 1+54
B
(B) 1−258
C
(C) −1+54
D
(D) −1−54
Answer
(A) 1+54
Explanation
Solution
Explanation:
Given:sin2θ=cos3θ,0<θ<π2As we know that, sin2θ=2sinθcosθ and cos3θ=4cos3θ−3cosθ⇒2sinθcosθ=4cos3θ−3cosθ⇒2sinθ=4cos2θ−3⇒2sinθ=4(1−sin2θ)−3=4−4sin2θ−3⇒4sin2θ+2sinθ−1=0Comparing the above equation with quadratic equation ax2+bx+c=0,a=4,b=2 and c=−1Now substituting the values in the quadratic formula x=(−b±b2−4ac)2a we get,sinθ=−2±−22−4(4)(−1)2(4)=−2±4+168=−2±208=−1±54Thus, sinθ=−1±54Since, 0<θ<π2⇒θ lies between 0∘ to 90∘⇒ all ratios are positive.⇒sinθ=−1+54As we know that, cos2θ=cos2θ−sin2θ=1−2sin2θ⇒cos2θ=1−2(−1+54)2=1+54∴ The the value of cos2θ is 1+54Hence, the correct option is (A).