Solveeit Logo

Question

Question: Suppose $p, q, r \neq 0$ and system of equation $(p + a)x + by + cz = 0, ax + (q + b)y + cz = 0, ax ...

Suppose p,q,r0p, q, r \neq 0 and system of equation (p+a)x+by+cz=0,ax+(q+b)y+cz=0,ax+by+(r+c)z=0(p + a)x + by + cz = 0, ax + (q + b)y + cz = 0, ax + by + (r + c)z = 0, has a non-trivial solution, then the value of ap+bq+cr\frac{a}{p} + \frac{b}{q} + \frac{c}{r} is

A

-1

B

0

C

1

D

2

Answer

-1

Explanation

Solution

The given system of linear equations is:

  1. (p+a)x+by+cz=0(p + a)x + by + cz = 0

  2. ax+(q+b)y+cz=0ax + (q + b)y + cz = 0

  3. ax+by+(r+c)z=0ax + by + (r + c)z = 0

This is a homogeneous system of linear equations. For a homogeneous system to have a non-trivial solution, the determinant of the coefficient matrix must be zero. The coefficient matrix is M=(p+abcaq+bcabr+c)M = \begin{pmatrix} p+a & b & c \\ a & q+b & c \\ a & b & r+c \end{pmatrix}. The condition for a non-trivial solution is det(M)=0\det(M) = 0.

We calculate the determinant: det(M)=(p+a)q+bcbr+cbacar+c+caq+bab\det(M) = (p+a) \begin{vmatrix} q+b & c \\ b & r+c \end{vmatrix} - b \begin{vmatrix} a & c \\ a & r+c \end{vmatrix} + c \begin{vmatrix} a & q+b \\ a & b \end{vmatrix}

=(p+a)[(q+b)(r+c)bc]b[a(r+c)ac]+c[aba(q+b)]= (p+a)[(q+b)(r+c) - bc] - b[a(r+c) - ac] + c[ab - a(q+b)]

=(p+a)[qr+qc+br+bcbc]b[ar+acac]+c[abaqab]= (p+a)[qr + qc + br + bc - bc] - b[ar + ac - ac] + c[ab - aq - ab]

=(p+a)[qr+qc+br]b[ar]+c[aq]= (p+a)[qr + qc + br] - b[ar] + c[-aq]

=p(qr+qc+br)+a(qr+qc+br)abracq= p(qr + qc + br) + a(qr + qc + br) - abr - acq

=pqr+pqc+pbr+aqr+aqc+abrabracq= pqr + pqc + pbr + aqr + aqc + abr - abr - acq

=pqr+pqc+pbr+aqr= pqr + pqc + pbr + aqr

The condition for a non-trivial solution is pqr+pqc+pbr+aqr=0pqr + pqc + pbr + aqr = 0.

Since p,q,r0p, q, r \neq 0, we can divide the entire equation by pqrpqr:

pqrpqr+pqcpqr+pbrpqr+aqrpqr=0\frac{pqr}{pqr} + \frac{pqc}{pqr} + \frac{pbr}{pqr} + \frac{aqr}{pqr} = 0

1+cr+bq+ap=01 + \frac{c}{r} + \frac{b}{q} + \frac{a}{p} = 0

Rearranging the terms, we get: ap+bq+cr=1\frac{a}{p} + \frac{b}{q} + \frac{c}{r} = -1