Solveeit Logo

Question

Mathematics Question on Various Forms of the Equation of a Line

Suppose P(2,y,z)P(2,\,y,\,z) lies on the line through A(3,1,4)A(3,-1,4) and B(4,2,1)B(-4,2,1) . Then, the value of z is equal to

A

12\frac{-1}{2}

B

194\frac{19}{4}

C

194\frac{-19}{4}

D

257\frac{25}{7}

Answer

257\frac{25}{7}

Explanation

Solution

The equation of line passing through the point
A(3,1,4)A(3,-1,4) and B(4,2,1)B(-4,2,1) .
xx1x2x1=yy1y2y1=zz1z2z1\frac{x-{{x}_{1}}}{{{x}_{2}}-{{x}_{1}}}=\frac{y-{{y}_{1}}}{{{y}_{2}}-{{y}_{1}}}=\frac{z-{{z}_{1}}}{{{z}_{2}}-{{z}_{1}}}
\Rightarrow x343=y+12+1=z414\frac{x-3}{-4-3}=\frac{y+1}{2+1}=\frac{z-4}{1-4}
\Rightarrow x37=y+13=z43\frac{x-3}{-7}=\frac{y+1}{3}=\frac{z-4}{-3}
Since, the point P(2,y,z)P(2,y,z) passing through the above line,
then \Rightarrow 237=y+13=z43\frac{2-3}{-7}=\frac{y+1}{3}=\frac{z-4}{-3}
\Rightarrow y+13=z43=17\frac{y+1}{3}=\frac{z-4}{-3}=\frac{1}{7}
\Rightarrow y=371y=\frac{3}{7}-1
and z=37+4z=-\frac{3}{7}+4
\Rightarrow y=47y=-\frac{4}{7}
and z=257z=\frac{25}{7}