Question
Question: Suppose n be an integer greater than 1, let $a_n = \frac{1}{log_n 2002}$. Suppose b = $a_2 + a_3 + a...
Suppose n be an integer greater than 1, let an=logn20021. Suppose b = a2+a3+a4+a5 and c = a10+a11+a12+a13+a14. Then (b - c) equals

A
10011
B
1
Answer
-1
Explanation
Solution
-
Given
an=logn20021.Use the change‐of-base formula:
logn2002=lognlog2002⟹an=log2002logn. -
Calculate b:
b=a2+a3+a4+a5=log2002log2+log3+log4+log5=log2002log(2⋅3⋅4⋅5)=log2002log(120). -
Calculate c:
c=a10+a11+a12+a13+a14=log2002log(10⋅11⋅12⋅13⋅14)=log2002log(240240).Notice that
10⋅11⋅12⋅13⋅14=120⋅2002. -
Find b−c:
b−c=log2002log(120)−log(240240)=log2002log(120⋅2002120)=log2002log(20021).Using the logarithm property log(20021)=−log(2002), we get
b−c=log2002−log(2002)=−1.