Solveeit Logo

Question

Question: Suppose n be an integer greater than 1, let $a_n = \frac{1}{log_n 2002}$. Suppose b = $a_2 + a_3 + a...

Suppose n be an integer greater than 1, let an=1logn2002a_n = \frac{1}{log_n 2002}. Suppose b = a2+a3+a4+a5a_2 + a_3 + a_4 + a_5 and c = a10+a11+a12+a13+a14a_{10} + a_{11} + a_{12} + a_{13} + a_{14}. Then (b - c) equals

A

11001\frac{1}{1001}

B

1

Answer

-1

Explanation

Solution

  1. Given

    an=1logn2002.a_n = \frac{1}{\log_n{2002}}.

    Use the change‐of-base formula:

    logn2002=log2002lognan=lognlog2002.\log_n{2002} = \frac{\log{2002}}{\log{n}}\quad\Longrightarrow\quad a_n = \frac{\log{n}}{\log{2002}}.
  2. Calculate bb:

    b=a2+a3+a4+a5=log2+log3+log4+log5log2002=log(2345)log2002=log(120)log2002.b = a_2 + a_3 + a_4 + a_5 = \frac{\log2+\log3+\log4+\log5}{\log2002} = \frac{\log(2\cdot3\cdot4\cdot5)}{\log2002} = \frac{\log(120)}{\log2002}.
  3. Calculate cc:

    c=a10+a11+a12+a13+a14=log(1011121314)log2002=log(240240)log2002.c = a_{10}+a_{11}+a_{12}+a_{13}+a_{14} = \frac{\log(10\cdot11\cdot12\cdot13\cdot14)}{\log2002} = \frac{\log(240240)}{\log2002}.

    Notice that

    1011121314=1202002.10\cdot11\cdot12\cdot13\cdot14 = 120\cdot2002.
  4. Find bcb-c:

    bc=log(120)log(240240)log2002=log(1201202002)log2002=log(12002)log2002.b-c = \frac{\log(120)-\log(240240)}{\log2002} = \frac{\log\left(\frac{120}{120\cdot2002}\right)}{\log2002} = \frac{\log\left(\frac{1}{2002}\right)}{\log2002}.

    Using the logarithm property log(12002)=log(2002)\log\left(\frac{1}{2002}\right) = -\log(2002), we get

    bc=log(2002)log2002=1.b-c = \frac{-\log(2002)}{\log2002} = -1.