Question
Mathematics Question on Integrals of Some Particular Functions
Suppose M=0∫π/2x+2cosxdx, N=0∫π/4(x+1)2sinxcosxdx Then, the value of (M−N) equals
A
π+23
B
π−42
C
π−24
D
π+42
Answer
π+42
Explanation
Solution
Given, M=0∫π/2(x+2)cosxdx
and N=0∫π/4(x+1)2sinxcosxdx
⇒N=0∫π/421(x+1)2sin2xdx
Put2x=t
⇒dx=2dt
∴N=0∫π/24(2t+1)2sintdt
=0∫π/2(t+2)2sintdt
=0∫π/2(x+2)2sinxdx
∴M−N=0∫π/2IIcosx×I(x+2)1dx−0∫π/2(x+2)2sinxdx
=[x+2sinx]0π/2−0∫π/2−(x+2)2sinxdx−0∫π/2(x+2)2sinxdx
=2π+2sin2π=2π+41=π+42