Solveeit Logo

Question

Question: Suppose \[J = \int {\dfrac{{{{\sin }^2}x + \sin x}}{{1 + \sin x + \cos x}}} dx\] and \[K = \int {\df...

Suppose J=sin2x+sinx1+sinx+cosxdxJ = \int {\dfrac{{{{\sin }^2}x + \sin x}}{{1 + \sin x + \cos x}}} dx and K=cos2x+cosx1+sinx+cosxdxK = \int {\dfrac{{{{\cos }^2}x + \cos x}}{{1 + \sin x + \cos x}}} dx. If CC is an arbitrary constant of integration, then which of the following is/are correct?
(a) J=12(xsinx+cosx)+CJ = \dfrac{1}{2}\left( {x - \sin x + \cos x} \right) + C
(b) J=K(sinx+cosx)+CJ = K - \left( {\sin x + \cos x} \right) + C
(c) J=xK+CJ = x - K + C
(d) K=12(xsinx+cosx)+CK = \dfrac{1}{2}\left( {x - \sin x + \cos x} \right) + C

Explanation

Solution

Here, we need to find which of the given options is true. We will add the given equations and use the sum of integrals. Then, we will simplify and integrate the resulting expression. Finally, we will rewrite the expression to get the required answer.
Formula Used: The square of the sine and cosine of an angle θ\theta is always equal to 1, that is sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1.

Complete step by step solution:
We will add the given equations and simplify to get the required answer.
Adding the given equations J=sin2x+sinx1+sinx+cosxdxJ = \int {\dfrac{{{{\sin }^2}x + \sin x}}{{1 + \sin x + \cos x}}} dx and K=cos2x+cosx1+sinx+cosxdxK = \int {\dfrac{{{{\cos }^2}x + \cos x}}{{1 + \sin x + \cos x}}} dx, we get
J+K=sin2x+sinx1+sinx+cosxdx+cos2x+cosx1+sinx+cosxdx\Rightarrow J + K = \int {\dfrac{{{{\sin }^2}x + \sin x}}{{1 + \sin x + \cos x}}} dx + \int {\dfrac{{{{\cos }^2}x + \cos x}}{{1 + \sin x + \cos x}}} dx
Therefore, adding the two integrals, we get
J+K=(sin2x+sinx1+sinx+cosx+cos2x+cosx1+sinx+cosx)dx\Rightarrow J + K = \int {\left( {\dfrac{{{{\sin }^2}x + \sin x}}{{1 + \sin x + \cos x}} + \dfrac{{{{\cos }^2}x + \cos x}}{{1 + \sin x + \cos x}}} \right)} dx
The denominators of both the functions in the parentheses is the same.
Adding the two functions, we get
J+K=(sin2x+sinx+cos2x+cosx1+sinx+cosx)dx\Rightarrow J + K = \int {\left( {\dfrac{{{{\sin }^2}x + \sin x + {{\cos }^2}x + \cos x}}{{1 + \sin x + \cos x}}} \right)} dx
Rewriting the equation, we get
J+K=(sin2x+cos2x+sinx+cosx1+sinx+cosx)dx\Rightarrow J + K = \int {\left( {\dfrac{{{{\sin }^2}x + {{\cos }^2}x + \sin x + \cos x}}{{1 + \sin x + \cos x}}} \right)} dx
We know that the square of the sine and cosine of an angle θ\theta is always equal to 1, that is sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1.
Therefore, we get
sin2x+cos2x=1\Rightarrow {\sin ^2}x + {\cos ^2}x = 1
Substituting sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1 in the equation J+K=(sin2x+cos2x+sinx+cosx1+sinx+cosx)dxJ + K = \int {\left( {\dfrac{{{{\sin }^2}x + {{\cos }^2}x + \sin x + \cos x}}{{1 + \sin x + \cos x}}} \right)} dx, we get
J+K=(1+sinx+cosx1+sinx+cosx)dx\Rightarrow J + K = \int {\left( {\dfrac{{1 + \sin x + \cos x}}{{1 + \sin x + \cos x}}} \right)} dx
The numerator and the denominator are equal. Therefore, we can simplify the equation as
J+K=(1)dx\Rightarrow J + K = \int {\left( 1 \right)} dx
Now, we will integrate the expression.
The integral of a constant (1)dx\int {\left( 1 \right)} dx can be written as (1)dx=x+C\int {\left( 1 \right)} dx = x + C, where CC is an arbitrary constant of integration.
Therefore, the equation becomes
J+K=x+C\Rightarrow J + K = x + C
Subtracting KK from both sides of the equation, we get
J+KK=x+CK\Rightarrow J + K - K = x + C - K
Thus, we get
J=xK+C\Rightarrow J = x - K + C
\therefore The equation J=xK+CJ = x - K + C is correct, where CC is an arbitrary constant of integration.

The correct option is option (c).

Note:
We used the sum of two integrals to add the integrals sin2x+sinx1+sinx+cosxdx\int {\dfrac{{{{\sin }^2}x + \sin x}}{{1 + \sin x + \cos x}}} dx and cos2x+cosx1+sinx+cosxdx\int {\dfrac{{{{\cos }^2}x + \cos x}}{{1 + \sin x + \cos x}}} dx. The sum of the integrals of two functions f(x)f\left( x \right) and g(x)g\left( x \right) is equal to the integral of the sum of the two functions, that is f(x)dx+g(x)dx=[f(x)+g(x)]dx\int {f\left( x \right)} dx + \int {g\left( x \right)} dx = \int {\left[ {f\left( x \right) + g\left( x \right)} \right]} dx.