Solveeit Logo

Question

Question: Suppose \[\int {{e}^{x}}\left( \tan x+1 \right)\sec xdx={{e}^{x}}f\left( x \right)+c\]. Then determi...

Suppose ex(tanx+1)secxdx=exf(x)+c\int {{e}^{x}}\left( \tan x+1 \right)\sec xdx={{e}^{x}}f\left( x \right)+c. Then determine the function f(x)f\left( x \right).

Explanation

Solution

In this question, we will first evaluate the integral ex(tanx+1)secxdx\int {{e}^{x}}\left( \tan x+1 \right)\sec xdx, for that we will split the integral into extanxsecxdx+exsecxdx\int {{e}^{x}}\tan x\sec xdx+\int {{e}^{x}}\sec xdx. Then we will not evaluate the value of the integral extanxsecxdx\int {{e}^{x}}\tan x\sec xdx rather we will evaluate exsecxdx\int {{e}^{x}}\sec xdx and we will see that it can be expressed in the form of extanxsecxdx\int {{e}^{x}}\tan x\sec xdx. We will then add both the value of the integrals and write it in the form of exf(x)+c{{e}^{x}}f\left( x \right)+c. Then by equation both the values we will determine the function f(x)f\left( x \right).

Complete step by step answer:
We are given that ex(tanx+1)secxdx=exf(x)+c\int {{e}^{x}}\left( \tan x+1 \right)\sec xdx={{e}^{x}}f\left( x \right)+c.
Let II denote the integral ex(tanx+1)secxdx\int {{e}^{x}}\left( \tan x+1 \right)\sec xdx.
That is, let I=ex(tanx+1)secxdxI=\int {{e}^{x}}\left( \tan x+1 \right)\sec xdx.
Now on splitting the above integrals, we will have
I=extanxsecxdx+exsecxdxI=\int {{e}^{x}}\tan x\sec xdx+\int {{e}^{x}}\sec xdx
Let us suppose that the integral extanxsecxdx\int {{e}^{x}}\tan x\sec xdx is denoted by I1{{I}_{1}} and the integral exsecxdx\int {{e}^{x}}\sec xdx is denoted by I2{{I}_{2}}.
That is, we have
I1=extanxsecxdx{{I}_{1}}=\int {{e}^{x}}\tan x\sec xdx and
I2=exsecxdx{{I}_{2}}=\int {{e}^{x}}\sec xdx
Since we know that by integration by parts we have (uv)dx=uvdxddx(u)vdx\int{\left( uv \right)dx=u\int{vdx-\int{\dfrac{d}{dx}\left( u \right)\int{vdx}}}}
We will now evaluate the integral I2=exsecxdx{{I}_{2}}=\int {{e}^{x}}\sec xdx by using integration by parts.
Suppose u=secxu=\sec x and v=exv={{e}^{x}}, then we have

& {{I}_{2}}=\int {{e}^{x}}\sec xdx \\\ & =\sec x\int{{{e}^{x}}dx-\int{\dfrac{d}{dx}\left( \sec x \right)\int{{{e}^{x}}dx}}} \end{aligned}$$ Now since $$\dfrac{d}{dx}\left( \sec x \right)=\sec x\tan x$$, therefore the above integral becomes $$\begin{aligned} & {{I}_{2}}=\sec x\int{{{e}^{x}}dx-\int{\dfrac{d}{dx}\left( \sec x \right)\int{{{e}^{x}}dx}}} \\\ & =\sec x\left( {{e}^{x}} \right)-\int{\sec x\tan x{{e}^{x}}dx} \\\ & ={{e}^{x}}\sec x-\int{{{e}^{x}}\sec x\tan x{{e}^{x}}dx}+c \end{aligned}$$ We also have the integral $${{I}_{1}}=\int {{e}^{x}}\tan x\sec xdx$$, hence using the value of $${{I}_{1}}$$ in the above integral, we have $$\begin{aligned} & {{I}_{2}}={{e}^{x}}\sec x-\int{{{e}^{x}}\sec x\tan x{{e}^{x}}dx}+c \\\ & ={{e}^{x}}\sec x-{{I}_{1}}+c \end{aligned}$$ Now substituting the value of integral $${{I}_{1}}$$ and $${{I}_{2}}$$ in integral $$I$$, we get $$\begin{aligned} & I=\int {{e}^{x}}\tan x\sec xdx+\int {{e}^{x}}\sec xdx \\\ & ={{I}_{1}}+{{I}_{2}} \\\ & ={{I}_{1}}+{{e}^{x}}\sec x-{{I}_{1}}+c \\\ & ={{e}^{x}}\sec x+c..............(1) \end{aligned}$$ We are also given that $$\int {{e}^{x}}\left( \tan x+1 \right)\sec xdx={{e}^{x}}f\left( x \right)+c$$. That is $$I={{e}^{x}}f\left( x \right)+c.............(2)$$. On equating equation (1) and (2), we get $${{e}^{x}}f\left( x \right)+c={{e}^{x}}\sec x+c$$ $$\Rightarrow f\left( x \right)=\sec x$$ Hence we get that the function $$f\left( x \right)$$ such that $$\int {{e}^{x}}\left( \tan x+1 \right)\sec xdx={{e}^{x}}f\left( x \right)+c$$ is equals to $$\sec x$$. **Note:** In this problem, while evaluating the integrals $$I=\int {{e}^{x}}\tan x\sec x dx+\int {{e}^{x}}\sec xdx$$ where $${{I}_{1}}=\int {{e}^{x}}\tan x\sec xdx$$ and $${{I}_{2}}=\int {{e}^{x}}\sec x dx$$, please do not try to expand the integral $${{I}_{1}}=\int {{e}^{x}}\tan x\sec xdx$$, otherwise complications of the problem will increase. Moreover keep in mind the fact that $$\dfrac{d}{dx}\left( \sec x \right)=\sec x\tan x$$ and use it in order to simplify the evaluation of the integrals.