Solveeit Logo

Question

Question: Suppose $f(x) = x^{3} + log_{2}(x+\sqrt{x^{2}+1})$. For any $a, b \in R$, to satisfy $f(a)+f(b) \ge ...

Suppose f(x)=x3+log2(x+x2+1)f(x) = x^{3} + log_{2}(x+\sqrt{x^{2}+1}). For any a,bRa, b \in R, to satisfy f(a)+f(b)0f(a)+f(b) \ge 0, the condition a+b0a+b \ge 0 is:

A

Necessary and sufficient

B

Necessary but not sufficient

C

Not necessary but sufficient

D

Neither necessary nor sufficient

Answer

Necessary and sufficient

Explanation

Solution

We have

f(x)=x3+log2(x+x2+1).f(x)=x^3+\log_2\Bigl(x+\sqrt{x^2+1}\Bigr).

Observation: Notice that

log2(x+x2+1)\log_2\Bigl(x+\sqrt{x^2+1}\Bigr)

is an odd function because

log2(x+x2+1)+log2(x+x2+1)=log2[(x+x2+1)(x+x2+1)]=log2(1)=0.\log_2\Bigl(-x+\sqrt{x^2+1}\Bigr) + \log_2\Bigl(x+\sqrt{x^2+1}\Bigr)=\log_2\Bigl[(x+\sqrt{x^2+1})(-x+\sqrt{x^2+1})\Bigr]=\log_2(1)=0.

Also, x3x^3 is odd. Hence,

f(x)=f(x).f(-x)=-f(x).

Thus, ff is odd.

Now, for any a,bRa,b\in\Bbb R,

f(a)+f(b)0f(b)f(a)=f(a).f(a)+f(b)\ge0 \quad\Longleftrightarrow\quad f(b)\ge -f(a)=f(-a).

Since ff is strictly increasing (its derivative is always positive), the inequality f(b)f(a)f(b)\ge f(-a) is equivalent to

baa+b0.b\ge -a\quad\Longleftrightarrow\quad a+b\ge0.

Thus the condition a+b0a+b\ge0 is both necessary and sufficient to guarantee f(a)+f(b)0f(a)+f(b)\ge0.