Solveeit Logo

Question

Quantitative Aptitude Question on Functions

Suppose for all integers x, there are two functions f and g such that f(x)+f(x1)1=0f(x)+f(x−1)−1=0 and g(x)=x2g(x)=x^2. If f(x2x)=5f(x^2−x)=5,then the value of the sum f(g(5))+g(f(5))f(g(5))+g(f(5)) is

Answer

Given:

  1. f(x)+f(x1)=1f(x)+f(x−1)=1
  2. f(x2x)=5f(x^2 - x) = 5
  3. g(x)=x2g(x) = x^2

By substituting x=1x=1 into equations (1) and (2), we get:
f(0)=5f(0)=5
f(1)+f(0)=1 f(1)=15=4f(1)+f(0)=1\\\ f(1)=1−5=−4

Next, substituting x=2x=2 into equation (1):
f(2)+f(1)=1\f(2)=1+4=5f(2)+f(1)=1 \\\f(2)=1+4=5

We observe that:

  • f(n)=5f(n)=5 if n is even
  • f(n)=4f(n)=−4 if n is odd

Finally, we find:

f(g(5))+g(f(5))=f(25)+g(4)f(g(5))+g(f(5))=f(25)+g(−4)
Since 25 is odd, f(25)=4f(25)=−4
And,
g(4)=(4)2=16g(-4) = (-4)^2 = 16
So,
f(g(5))+g(f(5))=4+16=12f(g(5))+g(f(5))=−4+16=12