Solveeit Logo

Question

Mathematics Question on Differential equations

Suppose for a differentiable function hh, h(0)=0h(0) = 0, h(1)=1h(1) = 1 and h(0)=h(1)=2h'(0) = h'(1) = 2. If g(x)=h(ex)eh(x)g(x) = h(e^x) \, e^{h(x)}, then g(0)g'(0) is equal to:

A

5

B

3

C

8

D

4

Answer

4

Explanation

Solution

Differentiating with respect to xx:

g(x)=h(ex)×eh(x)g(x) = h(e^x) \times e^{h(x)}

g(x)=h(ex)×eh(x)×h(x)+eh(x)×h(ex)×exg'(x) = h'(e^x) \times e^{h(x)} \times h'(x) + e^{h(x)} \times h'(e^x) \times e^x

g(0)=h(1)eh(0)h(0)+eh(0)h(1)g'(0) = h(1)e^{h(0)}h'(0) + e^{h(0)}h'(1)

=2+2=4= 2 + 2 = 4