Solveeit Logo

Question

Mathematics Question on Limits

Suppose f(x) ={ a+bx, x<<1 4, x=1 b-ax x>>1 and if lim x \rightarrow1 f(x) = f(1), what are possible values of a and b?

Answer

The given function is
f(x) ={ a+bx, x<1 4, x=1 b-ax x>1
limx1\lim_{x\rightarrow 1^-} f(x) = limx1\lim_{x\rightarrow 1} (a+bx) = a+b
limx1\lim_{x\rightarrow 1^-}f(x) = limx1\lim_{x\rightarrow 1} (b-ax) = b-a
f(1) = 4
It is given that limx1\lim_{x\rightarrow 1} f(x) =f(1).
limx1\lim_{x\rightarrow 1^-} f(x) = limx1+\lim_{x\rightarrow 1^+} f(x) =limx1\lim_{x\rightarrow 1} f(x) = f(1)
\Rightarrow a+b =4 and b-a =4
On solving these two equations, we obtain a =0 and b= 4.
Thus, the respective possible values of a and b are 0 and 4.