Solveeit Logo

Question

Mathematics Question on Differential equations

Suppose f:R(0,)f: R \rightarrow(0, \infty) be a differentiable function such that 5f(x+y)=f(x)f(y),x,yR5 f(x+y)=f(x) \cdot f(y), \forall x, y \in R If f(3)=320f(3)=320, then n=05f(n)\displaystyle\sum_{n=0}^5 f( n ) is equal to :

A

6575

B

6825

C

6875

D

6525

Answer

6825

Explanation

Solution

5f(x+y)=f(x)⋅f(y)
5f(0)=f(0)2⇒f(0)=5
5f(x+1)=f(x)⋅f(1)
⇒f(x)f(x+1)​=5f(1)​
⇒f(0)f(1)​⋅f(1)f(2)​⋅f(2)f(3)​=(5f(1)​)3
⇒5320​=53(f(1))3​⇒f(1)=20
∴5f(x+1)=20⋅f(x)⇒f(x+1)=4f(x)
n=0∑5​f(n)=5+5.4+5.42+5.43+5.44+5.45
=35[46−1]​=6825