Question
Mathematics Question on Differential equations
Suppose f:R→(0,∞) be a differentiable function such that 5f(x+y)=f(x)⋅f(y),∀x,y∈R If f(3)=320, then n=0∑5f(n) is equal to :
A
6575
B
6825
C
6875
D
6525
Answer
6825
Explanation
Solution
5f(x+y)=f(x)⋅f(y)
5f(0)=f(0)2⇒f(0)=5
5f(x+1)=f(x)⋅f(1)
⇒f(x)f(x+1)=5f(1)
⇒f(0)f(1)⋅f(1)f(2)⋅f(2)f(3)=(5f(1))3
⇒5320=53(f(1))3⇒f(1)=20
∴5f(x+1)=20⋅f(x)⇒f(x+1)=4f(x)
n=0∑5f(n)=5+5.4+5.42+5.43+5.44+5.45
=35[46−1]=6825