Solveeit Logo

Question

Question: Suppose f : R ® R is a differentiable function and f(1) = 4. Then the value of \(\lim_{x \rightarrow...

Suppose f : R ® R is a differentiable function and f(1) = 4. Then the value of limx14f(x)2t(x1)dt\lim_{x \rightarrow 1}\int_{4}^{f(x)}\frac{2t}{(x - 1)}dt is

A

8 f '(1)

B

4 f '(1)

C

2f '(1)

D

f '(1)

Answer

8 f '(1)

Explanation

Solution

limx1\lim _ { x \rightarrow 1 } 4f(x)2t6mudtx1\frac{\int_{4}^{f(x)}{2t\mspace{6mu} dt}}{x - 1}

= limx1\lim _ { x \rightarrow 1 } 2f(x)6muf(x)010\frac{2f(x)\mspace{6mu} f'(x) - 0}{1 - 0} = 2f(1) f ¢(1) = 8f ¢(1)