Solveeit Logo

Question

Question: Suppose \(f\left( x \right)=\left\\{ \begin{aligned} & a+\mu x,x<2 \\\ & 6,x=2 \\\ & \mu...

Suppose f\left( x \right)=\left\\{ \begin{aligned} & a+\mu x,x<2 \\\ & 6,x=2 \\\ & \mu -ax,x>2 \\\ \end{aligned} \right\\} and limx2f(x)=f(2)\displaystyle \lim_{x \to 2}f\left( x \right)=f\left( 2 \right). What are the possible values of aa and μ\mu ?

Explanation

Solution

Apply the continuity condition of a function f (x) at point x = k given as limxkf(x)=limxk+f(x)=f(k)\displaystyle \lim_{x \to k^-}f\left( x \right)=\displaystyle \lim_{x \to k^+}f\left( x \right)=f\left( k \right) where limxkf(x)\displaystyle \lim_{x \to k^-}f\left( x \right) is called the Left Hand Limit (L.H.L), limxk+f(x)\displaystyle \lim_{x \to k^+}f\left( x \right) is called the Right Hand Limit (R.H.L) and f(k)f\left( k \right) is called the value of the function at x = k. Substitute f(2)=6f\left( 2 \right)=6 and establish two linear relations between aa and μ\mu to find their values.

Complete step by step solution:
Here we have been provide with the function f\left( x \right)=\left\\{ \begin{aligned} & a+\mu x,x<2 \\\ & 6,x=2 \\\ & \mu -ax,x>2 \\\ \end{aligned} \right\\} with the condition limx2f(x)=f(2)\displaystyle \lim_{x \to 2}f\left( x \right)=f\left( 2 \right) and we are asked to find the values of aa and μ\mu .
Now, we can clearly see that the given function is continuous at x = 2 according to the given conditions in the question. Alternatively, we know that a function is continuous only when we have the condition limxkf(x)=limxk+f(x)=f(k)\displaystyle \lim_{x \to k^-}f\left( x \right)=\displaystyle \lim_{x \to k^+}f\left( x \right)=f\left( k \right) where limxkf(x)\displaystyle \lim_{x \to k^-}f\left( x \right) is called the Left Hand Limit (L.H.L), limxk+f(x)\displaystyle \lim_{x \to k^+}f\left( x \right) is called the Right Hand Limit (R.H.L) and f(k)f\left( k \right) is called the value of the function at x = k. Let us find the values of limits one by one.
(i) For the Left Hand Limit we have,
\Rightarrow L.H.L = limx2f(x)\displaystyle \lim_{x \to 2^-}f\left( x \right)
\Rightarrow L.H.L = limx2(a+μx)\displaystyle \lim_{x \to 2^-}\left( a+\mu x \right)
\Rightarrow L.H.L = (a+2μ)\left( a+2\mu \right) ……… (1)
(ii) For the Right Hand Limit we have,
\Rightarrow R.H.L = limx2+f(x)\displaystyle \lim_{x \to 2^+}f\left( x \right)
\Rightarrow R.H.L = limx2(μax)\displaystyle \lim_{x \to 2^-}\left( \mu -ax \right)
\Rightarrow R.H.L = (μ2a)\left( \mu -2a \right) ……… (2)
(iii) For the value of the function we have,
f(2)=6\Rightarrow f\left( 2 \right)=6 …….. (3)
So equating the three relations we get,
(a+2μ)=(μ2a)=6\Rightarrow \left( a+2\mu \right)=\left( \mu -2a \right)=6
Solving the two linear equations for the values of aa and μ\mu we get,
a=65\therefore a=\dfrac{-6}{5} and μ=185\mu =\dfrac{18}{5}
Hence, the above values of aa and μ\mu are our answer.

Note: You may check the answer by substituting the obtained values of aa and μ\mu in the given function f(x)f\left( x \right) and then evaluating the limit at x = 2. You must remember the condition for the existence of a limit around a given point. If any of the limits (R.H.L, L.H.L or value of the function) does not exist or is not a finite value then the limit does not exist at a particular point.