Question
Question: Suppose det \[\left[ \begin{matrix} \sum\limits_{k=0}^{n}{k} & \sum\limits_{k=0}^{n}{{}^{n}{{C}...
Suppose det k=0∑nk k=0∑nnCkk k=0∑nnCkk2k=0∑nnCk3k=0 holds for some positive integer n. Then k=0∑nk+1nCk is equal to ?
Solution
Usually when we have a determinant or det , we first have to cross multiply or simplify it according to the rows and columns. Since it is 2×2 determinant , let us just cross-multiply. The question says that k=0∑nk k=0∑nnCkk k=0∑nnCkk2k=0∑nnCk3k=0 holds good for some positive integer n . Let us first find that particular value of n for which it holds good. And then we can just expand the summation and substitute the value of n to find the value of k=0∑nk+1nCk.
Complete step-by-step solution:
We know that the sum of first n natural numbers is 2n(n+1)
⇒1+2+3+4.........n=2n(n+1)….eqn(1)
Now let us expand the first summation i.e k=0∑nk.
Upon expanding we get the following :
⇒k=0∑nk=0+1+2+3+.......n
From eqn(1), we can infer :
⇒k=0∑nk=0+1+2+3+.......n.⇒k=0∑nk=2n(n+1).....result(1)
Let us expand (1+x)n using binomial theorem.
⇒(1+x)n=nC0+nC1x+nC2x2+........nCnxn .
Now let us differentiate on both the sides.
⇒(1+x)n=nC0+nC1x+nC2x2+........nCnxn⇒n(1+x)n−1=0+nC1+nC2(2x)+nC3(3x2)+.......+nCnxn−1
Now let us substitute x=1.
⇒(1+x)n=nC0+nC1x+nC2x2+........nCnxn⇒n(1+x)n−1=0+nC1+nC2(2x)+nC3(3x2)+.......+nCn(nxn−1)⇒n(1+1)n−1=nC1+2nC2+3nC3+4nC4+........+nnCn⇒2n−1n=nC1+2nC2+3nC3+4nC4+........+nnCn.....eqn(2)
Now let us expand and solve the second summation i.e k=0∑nnCkk.
⇒k=0∑nnCkk=nC00+nC1+nC22+nC33+........nCnn.
From eqn(2) we can infer that :
⇒k=0∑nnCkk=nC00+nC1+nC22+nC33+........nCnn.⇒k=0∑nnCkk=2n−1n......result(2)
Now let us solve the next summation i.e k=0∑nnCkk2.
We can write rnCr as nn−1Cr−1 as both are same.
⇒rnCr=rr!(n−r)!n!⇒rnCr=rr(r−1)!(n−r)!n(n−1)!⇒rnCr=(r−1)!(n−r)!n(n−1)!⇒rnCr=nn−1Cr−1⇒r2nCr=r.r.nCr⇒r2nCr=rnn−1Cr−1⇒r2nCr=n((r−1)+1)n−1Cr−1⇒r2nCr=n(r−1)n−1Cr−1+nn−1Cr−1⇒r2nCr=n(n−1)n−2Cr−2+nn−1Cr−1.....eqn(3)
r is just some random variable and it is not related to the question whatsoever.
We can infer from eqn(3) that :