Solveeit Logo

Question

Question: Suppose \(D = \left| \begin{matrix} a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} ...

Suppose D=a1b1c1a2b2c2a3b3c3D = \left| \begin{matrix} a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3} \end{matrix} \right| and

D=a1+pb1b1+qc1c1+ra1a2+pb2b2+qc2c2+ra2a3+pb3b3+qc3c3+ra3D^{'} = \left| \begin{matrix} a_{1} + pb_{1} & b_{1} + qc_{1} & c_{1} + ra_{1} \\ a_{2} + pb_{2} & b_{2} + qc_{2} & c_{2} + ra_{2} \\ a_{3} + pb_{3} & b_{3} + qc_{3} & c_{3} + ra_{3} \end{matrix} \right|, then.

A

D=DD^{'} = D

B

D=D(1pqr)D^{'} = D(1 - pqr)

C

D=D(1+p+q+r)D^{'} = D(1 + p + q + r)

D

D=D(1+pqr)D^{'} = D(1 + pqr)

Answer

D=D(1+pqr)D^{'} = D(1 + pqr)

Explanation

Solution

D=D+pqrD=D(1+pqr)D^{'} = D + pqrD = D(1 + pqr).

Trick : Check by putting B=IB = I and all other zero.