Question
Question: Suppose \(D = \left| \begin{matrix} a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} ...
Suppose D=a1a2a3b1b2b3c1c2c3 and
D′=a1+pb1a2+pb2a3+pb3b1+qc1b2+qc2b3+qc3c1+ra1c2+ra2c3+ra3, then.
A
D′=D
B
D′=D(1−pqr)
C
D′=D(1+p+q+r)
D
D′=D(1+pqr)
Answer
D′=D(1+pqr)
Explanation
Solution
D′=D+pqrD=D(1+pqr).
Trick : Check by putting B=I and all other zero.