Solveeit Logo

Question

Question: Suppose a population A has \[100\] observations \[101\] , \[102\] ,………., \[200\] and another populat...

Suppose a population A has 100100 observations 101101 , 102102 ,………., 200200 and another population B has 100100 observations 151151 , 152152 , 153153 ,…………., 250250 . If VA{V_A} and VB{V_B} represent the variances of the two populations respectively, then VAVB\dfrac{{{V_A}}}{{{V_B}}} is
(A) 1\left( A \right){\text{ }}1
(B) 94\left( B \right){\text{ }}\dfrac{9}{4}
(C) 49\left( C \right){\text{ }}\dfrac{4}{9}
(D) 23\left( D \right){\text{ }}\dfrac{2}{3}

Explanation

Solution

In this question first we have to find the mean of both the populations A and B separately. Then after finding the mean find (xix)2\sum {{{\left( {{x_i} - \overline x } \right)}^2}} for both the populations by using the mean of the populations. Then find the variance of both the populations by substituting the values in the formula (xix)2n\dfrac{{\sum {{{\left( {{x_i} - \overline x } \right)}^2}} }}{n} . Then divide the variance of population A by the variance of population B and you will get your answer then on solving it further.

Complete step by step answer:
It is given to us that population A has 100100 observations that is
A  101,102,103,............,200A{\text{ }} \Rightarrow {\text{ }}101,102,103,............,200
It is also given that population B also has 100100 observations that is
 151,152,153,............,250{\text{B }} \Rightarrow {\text{ }}151,152,153,............,250
As we have to find the value of VAVB\dfrac{{{V_A}}}{{{V_B}}} . For this first we will find the variance of A.
Variance measures how far a data set is spread out. It is mathematically defined as the average of the squared differences from the mean. Variance is denoted by σ2{\sigma ^2} . So, to calculate the variance first we have to find the mean. Mean is denoted by x\overline x . Therefore,
Mean of population A = x = 101+102+103+.........+200100 = {\text{ }}\overline x {\text{ }} = {\text{ }}\dfrac{{101 + 102 + 103 + ......... + 200}}{{100}} ------------- (i)
To find the sum of the arithmetic sequence written in the numerator we use the formula S=n2(a+L)S = \dfrac{n}{2}\left( {a + L} \right)
where n is the total number of terms in the sequence, a is the first term, L is the last term of the sequence and S is the sum of the Arithmetic sequence. Therefore, equation (i) becomes
 x = 1002(101+200)100\Rightarrow {\text{ }}\overline x {\text{ }} = {\text{ }}\dfrac{{\dfrac{{100}}{2}\left( {101 + 200} \right)}}{{100}}
On further solving we get
 x = 50(301)100\Rightarrow {\text{ }}\overline x {\text{ }} = {\text{ }}\dfrac{{50\left( {301} \right)}}{{100}}
Zeroes in the numerator and the denominator will cancel out
 x = 5(301)10\Rightarrow {\text{ }}\overline x {\text{ }} = {\text{ }}\dfrac{{5\left( {301} \right)}}{{10}}
Ten in the denominator can be cancelled by the number five in the numerator,
 x = 3012\Rightarrow {\text{ }}\overline x {\text{ }} = {\text{ }}\dfrac{{301}}{2}
Therefore, the required mean for the population A is 3012\dfrac{{301}}{2} .
Now, the formula to find the variance is S2=(xix)2n{S^2} = \dfrac{{\sum {{{\left( {{x_i} - \overline x } \right)}^2}} }}{n} where
S2{S^2} is the sample variance
xi{x_i} is the value of the one observation
x\overline x is the mean value of all observations
nn is the number of observations
Therefore, we first solve (xix)\left( {{x_i} - \overline x } \right) at i=1,2,......100i = 1,2,......100
x1x=1013012\Rightarrow {x_1} - \overline x = 101 - \dfrac{{301}}{2} 2023012 \Rightarrow \dfrac{{202 - 301}}{2} 992 \Rightarrow \dfrac{{ - 99}}{2}
x2x=1023012\Rightarrow {x_2} - \overline x = 102 - \dfrac{{301}}{2} 2043012 \Rightarrow \dfrac{{204 - 301}}{2} 972 \Rightarrow \dfrac{{ - 97}}{2}
.
.
.
x100x=2003012\Rightarrow {x_{100}} - \overline x = 200 - \dfrac{{301}}{2} 4003012 \Rightarrow \dfrac{{400 - 301}}{2} 992 \Rightarrow \dfrac{{99}}{2}
Therefore,
(x1x)2+(x2x)2+..........+(x100x)2=2(992)2+2(972)2+.........+2(12)2\Rightarrow {\left( {{x_1} - \overline x } \right)^2} + {\left( {{x_2} - \overline x } \right)^2} + .......... + {\left( {{x_{100}} - \overline x } \right)^2} = 2{\left( {\dfrac{{99}}{2}} \right)^2} + 2{\left( {\dfrac{{97}}{2}} \right)^2} + ......... + 2{\left( {\dfrac{1}{2}} \right)^2}
Here we multiplied the right hand side by two because x1{x_1} is 99 - 99 and x100{x_{100}} is 9999 . So they have counted the fifty terms that’s why we take twice of that. By taking out 22 and 14\dfrac{1}{4} common from all terms at right hand side we have
12(12+32+52+.......+972+992)\Rightarrow \dfrac{1}{2}\left( {{1^2} + {3^2} + {5^2} + ....... + {{97}^2} + {{99}^2}} \right)
Therefore, VA=12(12+32+52+.......+972+992)100{V_A} = \dfrac{{\dfrac{1}{2}\left( {{1^2} + {3^2} + {5^2} + ....... + {{97}^2} + {{99}^2}} \right)}}{{100}} -------------- (i)
Similarly we can find mean and variance for B just like we do for A. Therefore, the mean of population B will be
y=151+152+.........+250100\overline y = \dfrac{{151 + 152 + ......... + 250}}{{100}}
Now we will use the formula S=n2(a+L)S = \dfrac{n}{2}\left( {a + L} \right) in the numerator of the above expression
y=1002(151+250)100\overline y = \dfrac{{\dfrac{{100}}{2}\left( {151 + 250} \right)}}{{100}}
100100 in both the numerator and the denominator will cancel out each other
y=12(151+250)\overline y = \dfrac{1}{2}\left( {151 + 250} \right)
On adding the terms we get
y=4012\overline y = \dfrac{{401}}{2}
So, the mean of the population B is 4012\dfrac{{401}}{2} .
Similarly as we done above for A, For B will be
y1y=1514012{y_1} - \overline y = 151 - \dfrac{{401}}{2} 3024012 \Rightarrow \dfrac{{302 - 401}}{2} 992 \Rightarrow \dfrac{{ - 99}}{2}
y2y=1524012{y_2} - \overline y = 152 - \dfrac{{401}}{2} 3044012 \Rightarrow \dfrac{{304 - 401}}{2} 972 \Rightarrow \dfrac{{97}}{2}
.
.
.
y100y=2504012{y_{100}} - \overline y = 250 - \dfrac{{401}}{2} 5004012 \Rightarrow \dfrac{{500 - 401}}{2} 992 \Rightarrow \dfrac{{99}}{2}
Therefore,
(y1y)2+(y2y)2+..........+(y100y)2=2(992)2+2(972)2+.........+2(12)2\Rightarrow {\left( {{y_1} - \overline y } \right)^2} + {\left( {{y_2} - \overline y } \right)^2} + .......... + {\left( {{y_{100}} - \overline y } \right)^2} = 2{\left( {\dfrac{{99}}{2}} \right)^2} + 2{\left( {\dfrac{{97}}{2}} \right)^2} + ......... + 2{\left( {\dfrac{1}{2}} \right)^2}
On further solving the right hand side will be
12(12+32+52+.......+972+992)\Rightarrow \dfrac{1}{2}\left( {{1^2} + {3^2} + {5^2} + ....... + {{97}^2} + {{99}^2}} \right)
Therefore,
VB=12(12+32+52+.......+972+992)100{V_B} = \dfrac{{\dfrac{1}{2}\left( {{1^2} + {3^2} + {5^2} + ....... + {{97}^2} + {{99}^2}} \right)}}{{100}} -------------- (ii)
On dividing equation (i) by (ii) we get
(i)(ii)VAVB=12(12+32+52+.......+972+992)10012(12+32+52+.......+972+992)100\dfrac{{(i)}}{{(ii)}} \Rightarrow \dfrac{{{V_A}}}{{{V_B}}} = \dfrac{{\dfrac{{\dfrac{1}{2}\left( {{1^2} + {3^2} + {5^2} + ....... + {{97}^2} + {{99}^2}} \right)}}{{100}}}}{{\dfrac{{\dfrac{1}{2}\left( {{1^2} + {3^2} + {5^2} + ....... + {{97}^2} + {{99}^2}} \right)}}{{100}}}}
As it is clearly observable that the numerator and the denominator are the same. Therefore, they will cancel each other out. By doing this we have
VAVB=1\Rightarrow \dfrac{{{V_A}}}{{{V_B}}} = 1
Hence, the correct options is (A) 1\left( A \right){\text{ }}1.

Note:
Note that we can also find the answer of the given question directly without doing any calculation or we can say it as a shortcut method. Series A: 101101 , 102102 ,………., 200200 and Series B: 151151 , 152152 , 153153 ,…………., 250250 . Series B is obtained by adding a fixed quantity to each item of series A. We know that variance is independent of change of origin; both series have the same variance so ratio of their variances is one.