Solveeit Logo

Question

Question: Suppose 4 distinct positive integers \({a_1},{a_2},{a_3},{a_4}\) are in G.P. . Let \({b_1} = {a_1}{\...

Suppose 4 distinct positive integers a1,a2,a3,a4{a_1},{a_2},{a_3},{a_4} are in G.P. . Let b1=a1b2=b1+a2b3=b2+a3, b4=b3+a4{b_1} = {a_1}{\text{, }}{b_2} = {b_1} + {a_2}{\text{, }}{{\text{b}}_3} = {b_2} + {a_3},{\text{ }}{{\text{b}}_4} = {b_3} + {a_4} , then;
Statement (I)\left( {\text{I}} \right) : The numbers b1,b2,b3,b4{b_1},{b_2},{b_3},{b_4} are neither in A.P. nor in G.P.
Statement (II)\left( {{\text{II}}} \right) : The numbers b1,b2,b3,b4{b_1},{b_2},{b_3},{b_4} are in H.P.
(1)\left( 1 \right) Statement I is true and statement II is also true ; statement II is the correct explanation of statement I .
(2)\left( 2 \right) Statement I is true and statement II is also true ; statement II is not the correct explanation of statement I .
(3)\left( 3 \right) Statement I is true and statement II is false
(4)\left( 4 \right) Statement I is false and statement II is true

Explanation

Solution

In order to solve this question, we should be familiar with the basic properties of Geometric progression (G.P.) and Arithmetic progression (A.P.) . (1)\left( 1 \right) Geometric progression is a type of sequence in which each next term can be found out by multiplying the previous term with a constant number. It is generally represented like: \left\\{ {a,{\text{ }}ar,{\text{ }}a{r^2},{\text{ }}a{r^3},{\text{ }}a{r^4}..........} \right\\} where aa is the first term and rr is the common ratio which can be calculated as: r=Second termFirst termr = \dfrac{{{\text{Second term}}}}{{{\text{First term}}}} . (2)\left( 2 \right) Arithmetic progression is a type of sequence in which the difference of any two successive or consecutive numbers is always constant, that constant value is termed as a common difference and is denoted by dd . An arithmetic sequence in terms of common difference is represented as: \left\\{ {a,{\text{ }}a + d,{\text{ }}a + 2d,{\text{ }}a + 3d,...........a + \left( {n - 1} \right)d} \right\\} .

Complete step-by-step solution:
Since a1,a2,a3,a4{a_1},{a_2},{a_3},{a_4} are in G.P. ( given ) , then by the basic properties of G.P. ;
a1 , a2=a1r , a3=a1r2 , a4=a1r3\Rightarrow {a_1}{\text{ , }}{a_2} = {a_1}r{\text{ , }}{a_3} = {a_1}{r^2}{\text{ , }}{a_4} = {a_1}{r^3}
Now, let us calculate the values of b1,b2,b3,b4{b_1},{b_2},{b_3},{b_4} in terms of a1,a2,a3,a4{a_1},{a_2},{a_3},{a_4} ;
b1=a1 ......(1)\because {b_1} = {a_1}{\text{ }}......\left( 1 \right)
b2=b1+a2=a1+a2\Rightarrow {b_2} = {b_1} + {a_2} = {a_1} + {a_2} (Putting the value of b1{b_1} from equation (1)\left( 1 \right) )
Put the value of a2=a1r{a_2} = {a_1}r , in the above equation we get;
b2=a1+a1r=a1(1+r)\Rightarrow {b_2} = {a_1} + {a_1}r = {a_1}\left( {1 + r} \right)
b2=a1(1+r) ......(2)\therefore {b_2} = {a_1}\left( {1 + r} \right){\text{ }}......\left( 2 \right)
b3=b2+a3=a1+a2+a3\Rightarrow {b_3} = {b_2} + {a_3} = {a_1} + {a_2} + {a_3} (Putting the value of b2{b_2} from equation (2)\left( 2 \right) )
Put the value of a3=a1r2{a_3} = {a_1}{r^2} , in the above equation we get;
b3=a1(1+r)+a1r2\Rightarrow {b_3} = {a_1}\left( {1 + r} \right) + {a_1}{r^2}
b3=a1(1+r+r2) ......(3)\Rightarrow {b_3} = {a_1}\left( {1 + r + {r^2}} \right){\text{ }}......\left( 3 \right)
b4=b3+a4=a1+a2+a3+a4\Rightarrow {b_4} = {b_3} + {a_4} = {a_1} + {a_2} + {a_3} + {a_4} (Putting the value of b3{b_3} from equation (3)\left( 3 \right) )
Put the value of a4=a1r3{a_4} = {a_1}{r^3} , in the above equation we get;
b4=a1(1+r+r2)+a1r3\Rightarrow {b_4} = {a_1}\left( {1 + r + {r^2}} \right) + {a_1}{r^3}
b4=a1(1+r+r2+r3) ......(4)\Rightarrow {b_4} = {a_1}\left( {1 + r + {r^2} + {r^3}} \right){\text{ }}......\left( 4 \right)
Let us check for both the given statements now;
Statement (I)\left( {\text{I}} \right) : The numbers b1,b2,b3,b4{b_1},{b_2},{b_3},{b_4} are neither in A.P. nor in G.P.
(1)\left( 1 \right) If b1,b2,b3,b4{b_1},{b_2},{b_3},{b_4} are in A.P. then the below condition must be true;
b2b1=b3b2\Rightarrow {b_2} - {b_1} = {b_3} - {b_2} (must be true if in A.P.)
Substituting the values of b1,b2,b3{b_1},{b_2},{b_3} from equation (1),(2) and(3)\left( 1 \right),\left( 2 \right){\text{ and}}\left( 3 \right) ;
a1(1+r)a1=a1+a1r+a1r2a1a1r\Rightarrow {a_1}\left( {1 + r} \right) - {a_1} = {a_1} + {a_1}r + {a_1}{r^2} - {a_1} - {a_1}r
On further simplification;
a1ra1r2\Rightarrow {a_1}r \ne {a_1}{r^2}
Therefore, b1,b2,b3,b4{b_1},{b_2},{b_3},{b_4} are not in A.P.
(2)\left( 2 \right) If b1,b2,b3,b4{b_1},{b_2},{b_3},{b_4} are in G.P. then the below condition must be true;
b2b1=b3b2\Rightarrow \dfrac{{{b_2}}}{{{b_1}}} = \dfrac{{{b_3}}}{{{b_2}}} (must be true if in G.P.)
a(1+r)a=a(1+r+r2)a(1+r)\Rightarrow \dfrac{{a\left( {1 + r} \right)}}{a} = \dfrac{{a\left( {1 + r + {r^2}} \right)}}{{a\left( {1 + r} \right)}}
1+r1+r+r21+r\Rightarrow 1 + r \ne \dfrac{{1 + r + {r^2}}}{{1 + r}}
Therefore, b1,b2,b3,b4{b_1},{b_2},{b_3},{b_4} are not in G.P.
Hence statement I is true that b1,b2,b3,b4{b_1},{b_2},{b_3},{b_4} are neither in A.P. nor in G.P.
Statement (II)\left( {{\text{II}}} \right) : The numbers b1,b2,b3,b4{b_1},{b_2},{b_3},{b_4} are in H.P.
If b1,b2,b3,b4{b_1},{b_2},{b_3},{b_4} are in H.P. then the below condition must be true;
1b21b1=1b31b2\Rightarrow \dfrac{1}{{{b_2}}} - \dfrac{1}{{{b_1}}} = \dfrac{1}{{{b_3}}} - \dfrac{1}{{{b_2}}} (must be true if in H.P.)
1a(1+r)1a=1a(1+r+r2)1a(1+r)\Rightarrow \dfrac{1}{{a\left( {1 + r} \right)}} - \dfrac{1}{a} = \dfrac{1}{{a\left( {1 + r + {r^2}} \right)}} - \dfrac{1}{{a\left( {1 + r} \right)}}
On further simplification;
1a(11+r1)=1a(1(1+r+r2)1(1+r))\Rightarrow \dfrac{1}{a}\left( {\dfrac{1}{{1 + r}} - 1} \right) = \dfrac{1}{a}\left( {\dfrac{1}{{\left( {1 + r + {r^2}} \right)}} - \dfrac{1}{{\left( {1 + r} \right)}}} \right)
Further simplifying the above equation;
1a(r1+r)=1a(r2(1+r)(1+r+r2))\Rightarrow \dfrac{1}{a}\left( {\dfrac{{ - r}}{{1 + r}}} \right) = \dfrac{1}{a}\left( {\dfrac{{ - {r^2}}}{{\left( {1 + r} \right)\left( {1 + r + {r^2}} \right)}}} \right)
ra(1+r)=r2a(1+r+r2)\Rightarrow \dfrac{{ - r}}{{a\left( {1 + r} \right)}} = \dfrac{{ - {r^2}}}{{a\left( {1 + r + {r^2}} \right)}}
After some arithmetic simplification, we get;
1(1+r)r(1+r+r2)\Rightarrow \dfrac{1}{{\left( {1 + r} \right)}} \ne \dfrac{{ - r}}{{\left( {1 + r + {r^2}} \right)}}
Means; 1b21b11b31b2\dfrac{1}{{{b_2}}} - \dfrac{1}{{{b_1}}} \ne \dfrac{1}{{{b_3}}} - \dfrac{1}{{{b_2}}}
Therefore, the numbers b1,b2,b3,b4{b_1},{b_2},{b_3},{b_4} are not in H.P. , so statement II is not true.
So the conclusion is, statement I is true but statement II is false.
Hence the correct answer for this question is option (3)\left( 3 \right).

Note: Basic knowledge about properties and formulae of G.P. ,H.P., A.P. is very helpful for solving this
type of questions. (1)\left( 1 \right) Harmonic progression (H.P.) : Harmonic progression is a type of sequence which is obtained by taking the reciprocals of the A.P. , example: if a,b,c,da,b,c,d is in A.P. then 1a,1b,1c,1d\dfrac{1}{a},\dfrac{1}{b},\dfrac{1}{c},\dfrac{1}{d} will be in H.P. The nth{n^{th}} term of a H.P. is given by: 1[a+(n1)d]\dfrac{1}{{\left[ {a + \left( {n - 1} \right)d} \right]}} (reciprocal of nth{n^{th}} term of A.P.) . Sum of nn terms of H.P. is given by: {S_n} = \dfrac{1}{d}\ln \left\\{ {\dfrac{{2a + \left( {2n - 1} \right)d}}{{2a - d}}} \right\\} . (2)\left( 2 \right) Geometric progression: The nth{n^{th}} term of a G.P. is given by ar=arn1{a_r} = a{r^{n - 1}} . The formula for sum of nn terms of a G.P. is given by: Sn=a[(rn1)(r1)] if r1{S_n} = a\left[ {\dfrac{{\left( {{r^n} - 1} \right)}}{{\left( {r - 1} \right)}}} \right]{\text{ if }}r \ne 1 . (3)\left( 3 \right) Arithmetic progression: The nth{n^{th}} term of a A.P. is given by an=a+(n1)d{a_n} = a + \left( {n - 1} \right)d . The formula for sum of nn terms of a A.P. is given by Sn=n2[2a+(n1)d]{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right] .