Solveeit Logo

Question

Mathematics Question on Binomial theorem

Suppose 2p2 - p, pp, 2α2 - \alpha, α\alpha are the coefficients of four consecutive terms in the expansion of (1+x)n(1 + x)^n. Then the value of p2α2+6α+2pp^2 - \alpha^2 + 6\alpha + 2p equals

A

4

B

10

C

8

D

6

Answer

10

Explanation

Solution

Solution: Let the coefficients 2p,p,2α,α2 - p, p, 2 - \alpha, \alpha be consecutive binomial coefficients:

Cr=2p,Cr+1=p,Cr+2=2α,Cr+3=α.C_r = 2 - p, \quad C_{r+1} = p, \quad C_{r+2} = 2 - \alpha, \quad C_{r+3} = \alpha.

Using the relationship for consecutive binomial coefficients:

- For Cr+1=nrr+1CrC_{r+1} = \frac{n - r}{r + 1} C_r:

p=nrr+1(2p).p = \frac{n - r}{r + 1} (2 - p).

Repeat for Cr+2C_{r+2} and Cr+3C_{r+3} to find pp and α\alpha.

Substitute the values to find:

p2α2+6α+2p=10.p^2 - \alpha^2 + 6\alpha + 2p = 10.