Solveeit Logo

Question

Question: summation 1+2(1/5)+3(1/5)^2+4(1/5)^3 ...........

summation 1+2(1/5)+3(1/5)^2+4(1/5)^3 ........

Answer

2516\frac{25}{16}

Explanation

Solution

We have the series

S=1+2(15)+3(15)2+4(15)3+S = 1 + 2\left(\frac{1}{5}\right) + 3\left(\frac{1}{5}\right)^2 + 4\left(\frac{1}{5}\right)^3 + \cdots

This can be written as:

S=n=1n(15)n1S = \sum_{n=1}^{\infty} n\left(\frac{1}{5}\right)^{n-1}

For r<1|r| < 1, the formula for the sum is:

n=1nrn1=1(1r)2\sum_{n=1}^{\infty} n r^{n-1} = \frac{1}{(1-r)^2}

Here, r=15r = \frac{1}{5}. Hence,

S=1(115)2=1(45)2=11625=2516S = \frac{1}{\left(1-\frac{1}{5}\right)^2} = \frac{1}{\left(\frac{4}{5}\right)^2} = \frac{1}{\frac{16}{25}} = \frac{25}{16}