Solveeit Logo

Question

Question: $\sum_{R=1}^{7}\tan^{2}\frac{R\pi}{16}$...

R=17tan2Rπ16\sum_{R=1}^{7}\tan^{2}\frac{R\pi}{16}

Answer

35

Explanation

Solution

The sum R=17tan2Rπ16\sum_{R=1}^{7}\tan^{2}\frac{R\pi}{16} is the sum of the roots of the polynomial in y=t2y=t^2 derived from setting the numerator of tan(16x)\tan(16x) to zero, where t=tanxt=\tan x. The polynomial is P(y)=(161)(163)y+(1615)y7P(y) = \binom{16}{1} - \binom{16}{3}y + \dots - \binom{16}{15}y^7. The roots are tan2(kπ16)\tan^2(\frac{k\pi}{16}) for k=1,,7k=1, \dots, 7. By Vieta's formulas, the sum of these roots is coeff of y6coeff of y7=(1613)(1615)=(163)(161)=56016=35-\frac{\text{coeff of } y^6}{\text{coeff of } y^7} = -\frac{\binom{16}{13}}{-\binom{16}{15}} = \frac{\binom{16}{3}}{\binom{16}{1}} = \frac{560}{16} = 35.