Solveeit Logo

Question

Question: $\sum_{r=0}^{\infty} \tan^{-1} \left( \frac{r((r+1)!)}{(r+1)+((r+1)!)^2} \right)$ is equal to:...

r=0tan1(r((r+1)!)(r+1)+((r+1)!)2)\sum_{r=0}^{\infty} \tan^{-1} \left( \frac{r((r+1)!)}{(r+1)+((r+1)!)^2} \right) is equal to:

A

π4\frac{\pi}{4}

Answer

π4\frac{\pi}{4}

Explanation

Solution

Let the given sum be SS. The general term of the sum is ar=tan1(r((r+1)!)(r+1)+((r+1)!)2)a_r = \tan^{-1} \left( \frac{r((r+1)!)}{(r+1)+((r+1)!)^2} \right). We want to express the argument of tan1\tan^{-1} in the form xy1+xy\frac{x-y}{1+xy} to use the identity tan1xtan1y=tan1(xy1+xy)\tan^{-1} x - \tan^{-1} y = \tan^{-1} \left( \frac{x-y}{1+xy} \right).

The argument is r((r+1)!)(r+1)+((r+1)!)2\frac{r((r+1)!)}{(r+1)+((r+1)!)^2}.

After significant manipulation (omitted for brevity), we can rewrite the general term as:

ar=tan1(1r!)tan1(1(r+1)!)a_r = \tan^{-1} \left( \frac{1}{r!} \right) - \tan^{-1} \left( \frac{1}{(r+1)!} \right)

The sum is S=r=0ar=r=0(tan1(1r!)tan1(1(r+1)!))S = \sum_{r=0}^{\infty} a_r = \sum_{r=0}^{\infty} \left( \tan^{-1} \left( \frac{1}{r!} \right) - \tan^{-1} \left( \frac{1}{(r+1)!} \right) \right). This is a telescoping series.

The NN-th partial sum is SN=r=0N(tan1(1r!)tan1(1(r+1)!))S_N = \sum_{r=0}^{N} \left( \tan^{-1} \left( \frac{1}{r!} \right) - \tan^{-1} \left( \frac{1}{(r+1)!} \right) \right). SN=(tan1(10!)tan1(11!))+(tan1(11!)tan1(12!))++(tan1(1N!)tan1(1(N+1)!))S_N = \left(\tan^{-1}\left(\frac{1}{0!}\right) - \tan^{-1}\left(\frac{1}{1!}\right)\right) + \left(\tan^{-1}\left(\frac{1}{1!}\right) - \tan^{-1}\left(\frac{1}{2!}\right)\right) + \dots + \left(\tan^{-1}\left(\frac{1}{N!}\right) - \tan^{-1}\left(\frac{1}{(N+1)!}\right)\right). SN=tan1(10!)tan1(1(N+1)!)=tan1(1)tan1(1(N+1)!)S_N = \tan^{-1}\left(\frac{1}{0!}\right) - \tan^{-1}\left(\frac{1}{(N+1)!}\right) = \tan^{-1}(1) - \tan^{-1}\left(\frac{1}{(N+1)!}\right). As NN \to \infty, 1(N+1)!0\frac{1}{(N+1)!} \to 0. S=limNSN=tan1(1)tan1(0)=π40=π4S = \lim_{N \to \infty} S_N = \tan^{-1}(1) - \tan^{-1}(0) = \frac{\pi}{4} - 0 = \frac{\pi}{4}.