Solveeit Logo

Question

Question: \[\sum_{r = 0}^{m}{n + rC_{n} =}\]...

r=0mn+rCn=\sum_{r = 0}^{m}{n + rC_{n} =}

A

n+m+1Cn+1n + m + 1C_{n + 1}

B

n+m+2Cnn + m + 2C_{n}

C

n+m+3Cn1n + m + 3C_{n - 1}

D

None of these

Answer

n+m+1Cn+1n + m + 1C_{n + 1}

Explanation

Solution

Since nCr=nCnrnC_{r} =^{n} ⥂ C_{n - r} and nCr1+nCr=n+1CrnC_{r - 1} +^{n} ⥂ C_{r} =^{n + 1} ⥂ C_{r} we have

r=0mn+rCn=r=0mn+rCr=nC0+n+1C1+n+2C2+......+n+mCm\sum_{r = 0}^{m}{n + rC_{n}} = \sum_{r = 0}^{m}{n + rC_{r}} =^{n} ⥂ C_{0} +^{n + 1} ⥂ C_{1} +^{n + 2} ⥂ C_{2} + ...... +^{n + m} ⥂ C_{m}

=[1+(n+1)]+n+2C2+n+3C3+........+n+mCm= \lbrack 1 + (n + 1)\rbrack +^{n + 2} ⥂ C_{2} +^{n + 3} ⥂ C_{3} + ........ +^{n + m} ⥂ C_{m}

=n+m+1Cn+1=^{n + m + 1} ⥂ C_{n + 1}, [6munCr=nCnr]\lbrack\because\mspace{6mu}^{n}C_{r} =^{n} ⥂ C_{n - r}\rbrack.