Solveeit Logo

Question

Question: $\sum_{n=1}^{\infty}\sum_{k=1}^{n-1}\frac{k}{2^{n+k}}$ is equal to -...

n=1k=1n1k2n+k\sum_{n=1}^{\infty}\sum_{k=1}^{n-1}\frac{k}{2^{n+k}} is equal to -

A

1/9

B

2/9

C

4/9

D

5/9

Answer

4/9

Explanation

Solution

The given double summation is S=n=1k=1n1k2n+kS = \sum_{n=1}^{\infty}\sum_{k=1}^{n-1}\frac{k}{2^{n+k}}. The summation region is 1kn11 \le k \le n-1 for n1n \ge 1. This implies n2n \ge 2.

We swap the order of summation. The region is k1k \ge 1 and nk+1n \ge k+1.

The sum becomes k=1n=k+1k2n2k\sum_{k=1}^{\infty}\sum_{n=k+1}^{\infty}\frac{k}{2^n 2^k}.

The inner sum is a geometric series n=k+112n=1/2k+111/2=12k\sum_{n=k+1}^{\infty}\frac{1}{2^n} = \frac{1/2^{k+1}}{1-1/2} = \frac{1}{2^k}.

The outer sum becomes k=1k2k12k=k=1k4k\sum_{k=1}^{\infty}\frac{k}{2^k} \cdot \frac{1}{2^k} = \sum_{k=1}^{\infty}\frac{k}{4^k}.

This is an arithmetic-geometric series k=1krk\sum_{k=1}^{\infty} kr^k with r=1/4r=1/4.

The sum is r(1r)2=1/4(11/4)2=1/4(3/4)2=1/49/16=49\frac{r}{(1-r)^2} = \frac{1/4}{(1-1/4)^2} = \frac{1/4}{(3/4)^2} = \frac{1/4}{9/16} = \frac{4}{9}.

The final answer is 49\frac{4}{9}.