Solveeit Logo

Question

Question: $\sum_{n=1}^{\infty}\frac{1}{n!}=?$...

n=11n!=?\sum_{n=1}^{\infty}\frac{1}{n!}=?

Answer

e-1

Explanation

Solution

The problem asks for the sum of the infinite series n=11n!\sum_{n=1}^{\infty}\frac{1}{n!}.

We know the Maclaurin series expansion for exe^x is given by: ex=n=0xnn!=x00!+x11!+x22!+x33!+e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = \frac{x^0}{0!} + \frac{x^1}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots Substitute x=1x=1 into this series: e1=e=n=01nn!=n=01n!e^1 = e = \sum_{n=0}^{\infty} \frac{1^n}{n!} = \sum_{n=0}^{\infty} \frac{1}{n!} Expanding the sum for ee: e=10!+11!+12!+13!+e = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots Since 0!=10! = 1, we can write: e=1+11!+12!+13!+e = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots The given series is n=11n!=11!+12!+13!+\sum_{n=1}^{\infty}\frac{1}{n!} = \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots. Comparing this with the expansion of ee, we can see that: e=1+(11!+12!+13!+)e = 1 + \left( \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots \right) e=1+n=11n!e = 1 + \sum_{n=1}^{\infty}\frac{1}{n!} To find the value of the given series, we rearrange the equation: n=11n!=e1\sum_{n=1}^{\infty}\frac{1}{n!} = e - 1