Solveeit Logo

Question

Question: \[\sum_{n = 1}^{n}\frac{1}{\log_{2^{n}}(a)} =\]...

n=1n1log2n(a)=\sum_{n = 1}^{n}\frac{1}{\log_{2^{n}}(a)} =

A

n(n+1)2loga2\frac{n(n + 1)}{2}\log_{a}2

B

n(n+1)2log2a\frac{n(n + 1)}{2}\log_{2}a

C

(n+1)2n24log2a\frac{(n + 1)^{2}n^{2}}{4}\log_{2}a

D

None of these

Answer

n(n+1)2loga2\frac{n(n + 1)}{2}\log_{a}2

Explanation

Solution

n=1n1log2n(a)=n=1nloga2n\sum_{n = 1}^{n}\frac{1}{\log_{2^{n}}(a)} = \sum_{n = 1}^{n}{\log_{a}2^{n}}=x=1x = 1

= loga2.n(n+1)2=n(n+1)2loga2\log_{a}2.\frac{n(n + 1)}{2} = \frac{n(n + 1)}{2}\log_{a}2.