Solveeit Logo

Question

Question: $\sum_{\gamma=0}^{n} \frac{(-1)^{\gamma}}{^{n}C_{\gamma}}$...

γ=0n(1)γnCγ\sum_{\gamma=0}^{n} \frac{(-1)^{\gamma}}{^{n}C_{\gamma}}

Answer

{0,if n is odd,2(n+1)n+2,if n is even.\begin{cases} 0,& \text{if } n \text{ is odd}, \\ \frac{2(n+1)}{n+2}, & \text{if } n \text{ is even}. \end{cases}

Explanation

Solution

We want to evaluate

S(n)=γ=0n(1)γ(nγ)S(n)=\sum_{\gamma=0}^{n}\frac{(-1)^{\gamma}}{\binom{n}{\gamma}}.

Step 1. Rewrite the summation:

Recall that

(nγ)=n!γ!(nγ)!1(nγ)=γ!(nγ)!n!\binom{n}{\gamma}=\frac{n!}{\gamma!(n-\gamma)!}\quad\Longrightarrow\quad \frac{1}{\binom{n}{\gamma}}=\frac{\gamma!(n-\gamma)!}{n!}.

Thus,

S(n)=γ=0n(1)γγ!(nγ)!n!S(n)=\sum_{\gamma=0}^{n}(-1)^{\gamma}\frac{\gamma!(n-\gamma)!}{n!}.

Step 2. Convert into an Integral Using the Beta Function:

Notice that

01xγ(1x)nγdx=γ!(nγ)!(n+1)!\int_0^1 x^{\gamma}(1-x)^{n-\gamma}\,dx=\frac{\gamma!(n-\gamma)!}{(n+1)!}.

This implies

γ!(nγ)!n!=(n+1)01xγ(1x)nγdx\frac{\gamma!(n-\gamma)!}{n!}=(n+1)\int_0^1 x^{\gamma}(1-x)^{n-\gamma}\,dx.

Thus, we can write

S(n)=(n+1)01[γ=0n(1)γxγ(1x)nγ]dxS(n)=(n+1)\int_0^1\left[\sum_{\gamma=0}^{n}(-1)^{\gamma}x^{\gamma}(1-x)^{n-\gamma}\right]dx.

Step 3. Evaluate the Sum inside the Integral:

Note that

(1x)nγxγ=(1x)n(x1x)γ(1-x)^{n-\gamma}x^{\gamma}=(1-x)^n\left(\frac{x}{1-x}\right)^{\gamma}.

So the inner summation becomes

γ=0n(1)γ(x1x)γ=(1x)1(x1x)n+11x+x\sum_{\gamma=0}^{n}(-1)^{\gamma}\left(\frac{x}{1-x}\right)^{\gamma}=(1-x) \cdot \frac{1- \left(-\frac{x}{1-x}\right)^{n+1}}{1-x+x}

since

1+x1x=11x1+\frac{x}{1-x}=\frac{1}{1-x}.

In fact, a simpler way is to recognize it as a finite geometric series: Let

r=x1xr=-\frac{x}{1-x}.

Then

γ=0nrγ=1rn+11r\sum_{\gamma=0}^{n}r^{\gamma}=\frac{1-r^{n+1}}{1-r}.

Substituting back, we have

γ=0n(1)γ(x1x)γ=1(x1x)n+11+x1x=(1x)[1(1)n+1(x1x)n+1]\sum_{\gamma=0}^{n}(-1)^{\gamma}\left(\frac{x}{1-x}\right)^{\gamma}=\frac{1-\left(-\frac{x}{1-x}\right)^{n+1}}{1+\frac{x}{1-x}}=(1-x)\left[1-(-1)^{n+1}\left(\frac{x}{1-x}\right)^{n+1}\right].

Thus the inner expression becomes

(1x)n(1x)[1(1)n+1(x1x)n+1]=(1x)n+1[1(1)n+1xn+1(1x)n+1](1-x)^n \cdot (1-x)\left[1-(-1)^{n+1}\left(\frac{x}{1-x}\right)^{n+1}\right] = (1-x)^{n+1}\left[1-(-1)^{n+1}\frac{x^{n+1}}{(1-x)^{n+1}}\right].

That is,

(1x)n+1(1)n+1xn+1(1-x)^{n+1}-(-1)^{n+1}x^{n+1}.

Step 4. Complete the Integral:

So

S(n)=(n+1)01[(1x)n+1(1)n+1xn+1]dxS(n)=(n+1)\int_{0}^{1}\left[(1-x)^{n+1}-(-1)^{n+1}x^{n+1}\right]dx.

We now evaluate the integrals separately:

  1. 01(1x)n+1dx=1n+2.\displaystyle \int_0^1 (1-x)^{n+1}\,dx=\frac{1}{n+2}.

  2. 01xn+1dx=1n+2.\displaystyle \int_0^1 x^{n+1}\,dx=\frac{1}{n+2}.

Thus,

S(n)=(n+1)[1n+2(1)n+11n+2]=n+1n+2[1(1)n+1]S(n)=(n+1)\left[\frac{1}{n+2}-(-1)^{n+1}\frac{1}{n+2}\right]=\frac{n+1}{n+2}\left[1-(-1)^{n+1}\right].

Step 5. Write the Final Answer According to the Parity of n:

  • If nn is odd then n+1n+1 is even so (1)n+1=1 (-1)^{n+1}=1 and

S(n)=n+1n+2[11]=0S(n)=\frac{n+1}{n+2}[1-1]=0.

  • If nn is even then n+1n+1 is odd so (1)n+1=1 (-1)^{n+1}=-1 and

S(n)=n+1n+2[1(1)]=2(n+1)n+2S(n)=\frac{n+1}{n+2}[1-(-1)]=\frac{2(n+1)}{n+2}.