Solveeit Logo

Question

Question: $\sum_{1}^{45} \frac{1}{sin(2n-1)}$...

1451sin(2n1)\sum_{1}^{45} \frac{1}{sin(2n-1)}

Answer

The problem likely contains a typo and should be n=1451sin(2n1)sin(2n+1)\sum_{n=1}^{45} \frac{1}{\sin(2n-1)^\circ \sin(2n+1)^\circ}, which evaluates to 2sin2(2)\frac{2}{\sin^2(2^\circ)}.

Explanation

Solution

The problem as stated, n=1451sin(2n1)\sum_{n=1}^{45} \frac{1}{\sin(2n-1)}, involves a sum of reciprocals of sines of angles in an arithmetic progression (1,3,,891^\circ, 3^\circ, \dots, 89^\circ). This sum does not have a simple closed form that can be derived using standard techniques typically taught for JEE/NEET.

It is highly probable that there is a typo in the question, and it is intended to be a telescoping sum, which is a common type of problem in competitive exams. The most common form for such sums involving trigonometric functions is 1sinAsinB\sum \frac{1}{\sin A \sin B} or similar.

Let's assume the question is intended to be: S=n=1451sin(2n1)sin(2n+1)S = \sum_{n=1}^{45} \frac{1}{\sin(2n-1)^\circ \sin(2n+1)^\circ} This assumption leads to a solvable telescoping series.

Steps to solve with the assumed correction:

  1. Analyze the general term: The general term is Tn=1sin(2n1)sin(2n+1)T_n = \frac{1}{\sin(2n-1)^\circ \sin(2n+1)^\circ}. The angles in the denominator are in an arithmetic progression with a common difference of 22^\circ.

  2. Apply the telescoping sum technique: We use the identity sin(AB)=sinAcosBcosAsinB\sin(A-B) = \sin A \cos B - \cos A \sin B. Consider the term sin((2n+1)(2n1))sin(2n1)sin(2n+1)\frac{\sin((2n+1)^\circ - (2n-1)^\circ)}{\sin(2n-1)^\circ \sin(2n+1)^\circ}. The numerator is sin(2)\sin(2^\circ). So, we can write TnT_n as: Tn=1sin(2)sin((2n+1)(2n1))sin(2n1)sin(2n+1)T_n = \frac{1}{\sin(2^\circ)} \cdot \frac{\sin((2n+1)^\circ - (2n-1)^\circ)}{\sin(2n-1)^\circ \sin(2n+1)^\circ} Tn=1sin(2)sin(2n+1)cos(2n1)cos(2n+1)sin(2n1)sin(2n1)sin(2n+1)T_n = \frac{1}{\sin(2^\circ)} \cdot \frac{\sin(2n+1)^\circ \cos(2n-1)^\circ - \cos(2n+1)^\circ \sin(2n-1)^\circ}{\sin(2n-1)^\circ \sin(2n+1)^\circ} Tn=1sin(2)(cos(2n1)sin(2n1)cos(2n+1)sin(2n+1))T_n = \frac{1}{\sin(2^\circ)} \left( \frac{\cos(2n-1)^\circ}{\sin(2n-1)^\circ} - \frac{\cos(2n+1)^\circ}{\sin(2n+1)^\circ} \right) Tn=1sin(2)(cot(2n1)cot(2n+1))T_n = \frac{1}{\sin(2^\circ)} (\cot(2n-1)^\circ - \cot(2n+1)^\circ)

  3. Sum the terms: Now, we sum TnT_n from n=1n=1 to 4545: S=n=1451sin(2)(cot(2n1)cot(2n+1))S = \sum_{n=1}^{45} \frac{1}{\sin(2^\circ)} (\cot(2n-1)^\circ - \cot(2n+1)^\circ) S=1sin(2)n=145(cot(2n1)cot(2n+1))S = \frac{1}{\sin(2^\circ)} \sum_{n=1}^{45} (\cot(2n-1)^\circ - \cot(2n+1)^\circ) This is a telescoping sum: For n=1n=1: cot(1)cot(3)\cot(1^\circ) - \cot(3^\circ) For n=2n=2: cot(3)cot(5)\cot(3^\circ) - \cot(5^\circ) For n=3n=3: cot(5)cot(7)\cot(5^\circ) - \cot(7^\circ) ... For n=45n=45: cot(2×451)cot(2×45+1)=cot(89)cot(91)\cot(2 \times 45 - 1)^\circ - \cot(2 \times 45 + 1)^\circ = \cot(89^\circ) - \cot(91^\circ)

    Adding these terms, all intermediate terms cancel out: n=145(cot(2n1)cot(2n+1))=cot(1)cot(91)\sum_{n=1}^{45} (\cot(2n-1)^\circ - \cot(2n+1)^\circ) = \cot(1^\circ) - \cot(91^\circ)

  4. Simplify the result: We know that cot(90+θ)=tan(θ)\cot(90^\circ + \theta) = -\tan(\theta). So, cot(91)=cot(90+1)=tan(1)\cot(91^\circ) = \cot(90^\circ + 1^\circ) = -\tan(1^\circ). The sum inside the bracket becomes: cot(1)(tan(1))=cot(1)+tan(1)\cot(1^\circ) - (-\tan(1^\circ)) = \cot(1^\circ) + \tan(1^\circ) Using the identity cotθ+tanθ=cosθsinθ+sinθcosθ=cos2θ+sin2θsinθcosθ=1sinθcosθ\cot \theta + \tan \theta = \frac{\cos \theta}{\sin \theta} + \frac{\sin \theta}{\cos \theta} = \frac{\cos^2 \theta + \sin^2 \theta}{\sin \theta \cos \theta} = \frac{1}{\sin \theta \cos \theta}. So, cot(1)+tan(1)=1sin(1)cos(1)\cot(1^\circ) + \tan(1^\circ) = \frac{1}{\sin(1^\circ) \cos(1^\circ)}. We also know that sin(2θ)=2sinθcosθ\sin(2\theta) = 2 \sin \theta \cos \theta, so sinθcosθ=sin(2θ)2\sin \theta \cos \theta = \frac{\sin(2\theta)}{2}. Thus, 1sin(1)cos(1)=1sin(2)2=2sin(2)\frac{1}{\sin(1^\circ) \cos(1^\circ)} = \frac{1}{\frac{\sin(2^\circ)}{2}} = \frac{2}{\sin(2^\circ)}.

  5. Final Answer: Substitute this back into the expression for SS: S=1sin(2)×2sin(2)=2sin2(2)S = \frac{1}{\sin(2^\circ)} \times \frac{2}{\sin(2^\circ)} = \frac{2}{\sin^2(2^\circ)}

Given the nature of competitive exams, the most plausible interpretation of the question is that it was intended to be a telescoping sum of the form 1sinAsinB\sum \frac{1}{\sin A \sin B}.