Solveeit Logo

Question

Question: Sum up to 16 terms of the series \(\dfrac{{{1}^{3}}}{1}+\dfrac{{{1}^{3}}+{{2}^{3}}}{1+3}+\dfrac{{{1}...

Sum up to 16 terms of the series 131+13+231+3+13+23+331+3+5+\dfrac{{{1}^{3}}}{1}+\dfrac{{{1}^{3}}+{{2}^{3}}}{1+3}+\dfrac{{{1}^{3}}+{{2}^{3}}+{{3}^{3}}}{1+3+5}+\cdots \cdots is

& A.450 \\\ & B.456 \\\ & C.446 \\\ & \text{D}.\text{None of these} \\\ \end{aligned}$$
Explanation

Solution

For solving the sum of 16 term series 131+13+231+3+13+23+331+3+5+\dfrac{{{1}^{3}}}{1}+\dfrac{{{1}^{3}}+{{2}^{3}}}{1+3}+\dfrac{{{1}^{3}}+{{2}^{3}}+{{3}^{3}}}{1+3+5}+\cdots \cdots we will first find nth{{n}^{th}} term of the series denoted by Tn{{T}_{n}}. Then we will find a sum of n terms of series denoted by Sn{{S}_{n}} using Tn\sum{{{T}_{n}}}. We will use following formula for solving this sum,
(1) 13+23+33++n3=n3 and n3{{1}^{3}}+{{2}^{3}}+{{3}^{3}}+\cdots \cdots +{{n}^{3}}=\sum{{{n}^{3}}}\text{ and }\sum{{{n}^{3}}} is equal to (n(n+1)2)2{{\left( \dfrac{n\left( n+1 \right)}{2} \right)}^{2}}.
(2) For an AP, a,a+d,a+2d,a+(n1)da,a+d,a+2d,\ldots \ldots a+\left( n-1 \right)d sum of n terms is given by n2(2a+(n1)d)\dfrac{n}{2}\left( 2a+\left( n-1 \right)d \right).
(3) (an+bn)=an+bn\sum \left( {{a}_{n}}+{{b}_{n}} \right)=\sum {{a}_{n}}+\sum {{b}_{n}}.
(4) Sum 12+22+32++n2=n2{{1}^{2}}+{{2}^{2}}+{{3}^{2}}+\cdots \cdots +{{n}^{2}}=\sum{{{n}^{2}}} is equal to n(n+1)(2n+1)6\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}.
(5) Sum 1+2+3+n=n1+2+3+\ldots \ldots n=\sum n is equal to n(n+1)2\dfrac{n\left( n+1 \right)}{2}.
(6) Sum 1+1+1+n=11+1+1+\ldots \ldots n=\sum 1 is equal to n.
Then we will put the value of n as 16 to get our final answer.

Complete step-by-step solution
Here, we are given the series as 131+13+231+3+13+23+331+3+5+\dfrac{{{1}^{3}}}{1}+\dfrac{{{1}^{3}}+{{2}^{3}}}{1+3}+\dfrac{{{1}^{3}}+{{2}^{3}}+{{3}^{3}}}{1+3+5}+\cdots \cdots .
Let us first find the nth{{n}^{th}} term of the series, for this, we will find nth{{n}^{th}} term of numerator and denominator separately.
For numerator, nth{{n}^{th}} term will be 13+23+33++n3=n3{{1}^{3}}+{{2}^{3}}+{{3}^{3}}+\cdots \cdots +{{n}^{3}}=\sum{{{n}^{3}}} which is equal to n3\sum{{{n}^{3}}}.
As we know n3=(n(n+1)2)2\sum{{{n}^{3}}}={{\left( \dfrac{n\left( n+1 \right)}{2} \right)}^{2}}.
So, number of nth{{n}^{th}} term is (n(n+1)2)2{{\left( \dfrac{n\left( n+1 \right)}{2} \right)}^{2}}.
For denominators, since all odd terms are adding, so nth{{n}^{th}} term will be 1+3+5++(2n1)1+3+5+\ldots \ldots +\left( 2n-1 \right).
As we can see, this is an AP with the first term (a) as 1 and a common difference d(3-1=5-3=2) as 2. So let us find the sum of n terms of this AP. Since the sum of n terms of an AP is given by Sn=n2(2a+(n1)d){{S}_{n}}=\dfrac{n}{2}\left( 2a+\left( n-1 \right)d \right).
So, we get,
Sn=n2(2+(n1)2)n2(2n)=n2{{S}_{n}}=\dfrac{n}{2}\left( 2+\left( n-1 \right)2 \right)\Rightarrow \dfrac{n}{2}\left( 2n \right)={{n}^{2}}.
Hence the denominator of nth{{n}^{th}} term is n2{{n}^{2}}.
So our nth{{n}^{th}} term of series denoted by Tn{{T}_{n}} is (n(n+1)2)2n2Tn=n2(n+1)24n2=(n+1)24\dfrac{{{\left( \dfrac{n\left( n+1 \right)}{2} \right)}^{2}}}{{{n}^{2}}}\Rightarrow {{T}_{n}}=\dfrac{{{n}^{2}}{{\left( n+1 \right)}^{2}}}{4{{n}^{2}}}=\dfrac{{{\left( n+1 \right)}^{2}}}{4}.
Since (a+b)2=a2+b2+2ab{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab so,

& {{T}_{n}}=\dfrac{{{n}^{2}}+1+2n}{4}=\dfrac{{{n}^{2}}}{4}+\dfrac{1}{4}+\dfrac{2n}{4} \\\ & \Rightarrow {{T}_{n}}=\dfrac{{{n}^{2}}}{4}+\dfrac{n}{2}+\dfrac{1}{4} \\\ \end{aligned}$$ Now we need to find sum of n terms of a series where ${{n}^{th}}$ term is ${{T}_{n}}=\dfrac{{{n}^{2}}}{4}+\dfrac{n}{2}+\dfrac{1}{4}$. So we just need to find $\sum{{{T}_{n}}}$. Let us denote the sum of n terms by ${{S}_{n}}$. Hence, ${{S}_{n}}=\sum{{{T}_{n}}}\Rightarrow {{S}_{n}}=\sum{\left( \dfrac{{{n}^{2}}}{4}+\dfrac{n}{2}+\dfrac{1}{4} \right)}$. As we know, $\sum \left( {{a}_{n}}+{{b}_{n}} \right)=\sum {{a}_{n}}+\sum {{b}_{n}}$ so we get: $$\begin{aligned} & {{S}_{n}}=\sum{\dfrac{{{n}^{2}}}{4}}+\sum{\dfrac{n}{2}}+\sum{\dfrac{1}{4}} \\\ & \Rightarrow {{S}_{n}}=\dfrac{1}{4}\sum{{{n}^{2}}}+\dfrac{1}{2}\sum{n}+\dfrac{1}{4}\sum{1} \\\ \end{aligned}$$ Now we know that, sum of squares of n terms is given by $\sum{{{n}^{2}}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}$. Also, the sum of n terms is given by $$\sum{n}=\dfrac{n\left( n+1 \right)}{2}$$. And the sum of $1+1+1+\ldots \ldots n$ is given by $\sum 1=n$. So putting all these values we get: $$\begin{aligned} & \Rightarrow {{S}_{n}}=\dfrac{1}{4}\left( \dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6} \right)+\dfrac{1}{2}\left( \dfrac{n\left( n+1 \right)}{2} \right)+\dfrac{1}{4}\left( n \right) \\\ & \Rightarrow {{S}_{n}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{24}+\dfrac{n\left( n+1 \right)}{4}+\dfrac{n}{4} \\\ \end{aligned}$$ Now, we need to find sum of first 16 terms, so putting n = 16, we get: $$\begin{aligned} & \Rightarrow {{S}_{16}}=\dfrac{16\left( 16+1 \right)\left( 2\left( 16 \right)+1 \right)}{24}+\dfrac{16\left( 16+1 \right)}{4}+\dfrac{16}{4} \\\ & \Rightarrow {{S}_{16}}=\dfrac{16\times 17\times 33}{24}+\dfrac{16\times 17}{4}+4 \\\ \end{aligned}$$ Simplifying we get: $$\begin{aligned} & \Rightarrow {{S}_{16}}=374+68+4 \\\ & \Rightarrow {{S}_{16}}=446 \\\ \end{aligned}$$ Hence sum of 16 terms of $\dfrac{{{1}^{3}}}{1}+\dfrac{{{1}^{3}}+{{2}^{3}}}{1+3}+\dfrac{{{1}^{3}}+{{2}^{3}}+{{3}^{3}}}{1+3+5}+\cdots \cdots $ is 446. **Hence option C is the correct answer.** **Note:** Students should know formulas of summation of some of the series such as $\sum n,\sum {{n}^{2}},\sum {{n}^{3}}$. Here we have not taken a sum of 16 sums directly as it would cause high calculations. Always try to make a general solution for the sum of a series and then put the value as 16. Here we have taken ${{S}_{n}}=\sum {{T}_{n}}$ which means we will take sum of all ${{T}_{n}}$ starting from 1 to n. Since ${{T}_{n}}=\dfrac{{{n}^{2}}}{4}+\dfrac{n}{2}+\dfrac{1}{4}$ which is equivalent to $\dfrac{{{1}^{3}}}{1}+\dfrac{{{1}^{3}}+{{2}^{3}}}{1+3}+\dfrac{{{1}^{3}}+{{2}^{3}}+{{3}^{3}}}{1+3+5}+\cdots \cdots \dfrac{{{n}^{3}}}{\left( 2n-1 \right)}$.