Solveeit Logo

Question

Question: Sum to n terms of the series \(\frac{1^{3}}{1} + \frac{1^{3} + 2^{3}}{1 + 3} + \frac{1^{3} + 2^{3} +...

Sum to n terms of the series 131+13+231+3+13+23+331+3+5\frac{1^{3}}{1} + \frac{1^{3} + 2^{3}}{1 + 3} + \frac{1^{3} + 2^{3} + 3^{3}}{1 + 3 + 5}+….. is –

A

n24\frac{n}{24} (n2 + 9n + 14)

B

n24\frac{n}{24} (2n2 + 7n + 15)

C

n24\frac{n}{24} (2n2 + 9n + 13)

D

n24\frac{n}{24} (n2 + 11n + 12)

Answer

n24\frac{n}{24} (2n2 + 9n + 13)

Explanation

Solution

Let tr denote the rth term of the series, then

tr = 13+23+...+r31+3+....+(2r1)\frac{1^{3} + 2^{3} + ... + r^{3}}{1 + 3 + .... + (2r - 1)} = 14r2(r+1)2r2\frac{\frac{1}{4}r^{2}(r + 1)^{2}}{r^{2}}= 14\frac{1}{4} (r + 1)2

̃ r=1ntr=14r=1n(r+1)2\sum_{r = 1}^{n}t_{r} = \frac{1}{4}\sum_{r = 1}^{n}{(r + 1)^{2}}= 14\frac { 1 } { 4 } [r=1n+1r21]\left\lbrack \sum_{r = 1}^{n + 1}{r^{2} - 1} \right\rbrack

= 14\frac { 1 } { 4 } [(n+1)(n+2)(2n+3)61]\left\lbrack \frac{(n + 1)(n + 2)(2n + 3)}{6} - 1 \right\rbrack

= 124\frac{1}{24} [2n3 + 9n2 + 13n + 6 – 6]

= n24\frac{n}{24} (2n2 + 9n + 13).