Question
Question: Sum to n terms of the series \(\frac{1^{3}}{1} + \frac{1^{3} + 2^{3}}{1 + 3} + \frac{1^{3} + 2^{3} +...
Sum to n terms of the series 113+1+313+23+1+3+513+23+33+….. is –
A
24n (n2 + 9n + 14)
B
24n (2n2 + 7n + 15)
C
24n (2n2 + 9n + 13)
D
24n (n2 + 11n + 12)
Answer
24n (2n2 + 9n + 13)
Explanation
Solution
Let tr denote the rth term of the series, then
tr = 1+3+....+(2r−1)13+23+...+r3 = r241r2(r+1)2= 41 (r + 1)2
̃ ∑r=1ntr=41∑r=1n(r+1)2= 41 [∑r=1n+1r2−1]
= 41 [6(n+1)(n+2)(2n+3)−1]
= 241 [2n3 + 9n2 + 13n + 6 – 6]
= 24n (2n2 + 9n + 13).