Solveeit Logo

Question

Mathematics Question on Combinations

i,j=0 tjn\sum_{\substack{i,j=0 \\\ t \neq j}}^n nCi nCj^nC_i\ ^nC_j
is equal to

A

22n2nCn2^{2n \text\\_2n}C_n

B

22n12n1Cn12^{2n-1\\_2n-1}C_{n-1}

C

22n12 2nCn2^{2n-\frac{1}{2}}\ ^{2n}C_n

D

2n1+22n1Cn2^{n-1}+2^{2n-1}C_n

Answer

22n2nCn2^{2n \text\\_2n}C_n

Explanation

Solution

The correct answer is (A) : 22n2nCn2^{2n \text\\_2n}C_n
i,j=0 tjn\sum_{\substack{i,j=0 \\\ t \neq j}}^n nCi nCj^nC_i\ ^nC_j
=i,j=0n= ∑^{n}_{i,j = 0} nCi nCji=jn nCi nCj^nC_i\ ^nC_j - ∑^{n}_{i=j}\ ^nC_i\ ^nC_j
=j=0n nCij=0n nCji=0n nCi Ci= ∑^{n}_{j=0}\ ^nC_i ∑^{n}_{j =0}\ ^nC_j - ∑^{n}_{ i =0}\ ^nC_i\ Ci
=2n.2n 2nCn= 2^n.2^n-\ ^{2n}C_n
=22n2nCn= 2^{2n\\_2n}C_n