Solveeit Logo

Question

Mathematics Question on Integration by Partial Fractions

r=120\sum_{r=1}^{20}(r2+1)(r!) is equal to

A

22!–21!

B

22!–2(21!)

C

21!–2(20!)

D

21!–20!

Answer

22!–2(21!)

Explanation

Solution

r=120\sum_{r=1}^{20}(r2+1+2r−2r)r!=r=120\sum_{r=1}^{20}((r+1)2−2r)r!
=r=120\sum_{r=1}^{20}[(r+1)(r+1)!−rr!]−r=1\sum_{r=1}^{}(r+1)r!=r!
=(2⋅2!–1!)+(3⋅3!–2⋅2!)+…+(21⋅21!–20⋅20!)−[(2!−1!)+(3!−2!)+…+(21!−20!)]
=(21⋅21!–1)−(21!−1)
=20⋅21!=(22−2)21!=22!–2(21!)
So, the correct option is (B): 22!–2(21!)