Question
Question: Sum of the series S= 1<sup>2</sup> – 2<sup>2</sup> + 3<sup>2</sup> – 4<sup>2</sup> +……–2002<sup>2</s...
Sum of the series S= 12 – 22 + 32 – 42 +……–20022 + 20032 is:
A
2007006
B
1005004
C
2000506
D
None of these
Answer
2007006
Explanation
Solution
We can write S as
S = (1 – 2)(1 + 2) + (3 – 4)(3 + 4)……
(2001 – 2002) (2001 + 2002) + 20032
̃ S = (–1)(1 + 2) + (–1)(3 + 4) …..(–1)
(2001 + 2002) + 20032
S = (–1)[1 + 2 + 3 + 4 + 5 +…..2002]+ 20032
= (-1) 2(2002×2003) + (2003)2
= – (1001×2003) + (2003)2
= (2003)(2003 – 1001)
= 2003 × (1002)
= 2007006