Solveeit Logo

Question

Question: Sum of the series $\frac{1}{2}+\frac{1+2}{3}+\frac{1+2+3}{4}+...20$ terms is equal to...

Sum of the series 12+1+23+1+2+34+...20\frac{1}{2}+\frac{1+2}{3}+\frac{1+2+3}{4}+...20 terms is equal to

Answer

105

Explanation

Solution

The nn-th term of the series is Tn=1+2+...+nn+1=n(n+1)/2n+1=n2T_n = \frac{1+2+...+n}{n+1} = \frac{n(n+1)/2}{n+1} = \frac{n}{2}. The sum of 20 terms is S20=n=120n2=12n=120nS_{20} = \sum_{n=1}^{20} \frac{n}{2} = \frac{1}{2} \sum_{n=1}^{20} n. Using the formula n=1Nn=N(N+1)2\sum_{n=1}^{N} n = \frac{N(N+1)}{2}, we get S20=12×20(20+1)2=12×210=105S_{20} = \frac{1}{2} \times \frac{20(20+1)}{2} = \frac{1}{2} \times 210 = 105.