Question
Question: Sum of the last 12 coefficients in the binomial expansion of \[{\left( {1 + x} \right)^{23}}\] is:...
Sum of the last 12 coefficients in the binomial expansion of (1+x)23 is:
Solution
Here we will first write the binomial expansion of (1+x)23 and then we will put x=1 and then solve it further to get the desired answer.
The general binomial expansion of (a+b)nis given by:-
(a+b)n=nC0(a)n(b)0+nC1(a)n−1(b)1+nC2(a)n−2(b)2+.............+nCn(a)0(b)n
Complete step-by-step answer:
Here we are given:-
(1+x)23
Now we know that the general binomial expansion of (a+b)nis given by:-
(a+b)n=nC0(a)n(b)0+nC1(a)n−1(b)1+nC2(a)n−2(b)2+.............+nCn(a)0(b)n
Hence the binomial expansion of (1+x)23is given by:-
(1+x)23=23C0(1)23(x)0+23C1(1)23−1(x)1+23C2(1)23−2(x)2+.............+23C23(1)0(x)23
Solving it further we get:-
(1+x)23=23C0+23C1(x)1+23C2(x)2+.............+23C23(x)23
Now putting x=1 we get:-
(1+1)23=23C0+23C1(1)1+23C2(1)2+.............+23C23(1)23
Solving it further we get:-
223=23C0+23C1+23C2+.....................+23C23
Now we know that:-
23C0=23C23
23C1=23C22
23C2=23C21
.
.
.
.
23C11=23C12
Hence, substituting these values we get:-
223=2[23C12+............+23C21+23C22+23C23]
Dividing the equation by 2 we get:-
2223=23C12+............+23C21+23C22+23C23
⇒222=23C12+............+23C21+23C22+23C23
Now since 23C12+............+23C21+23C22+23C23 is the sum f the coefficients of last 12 terms of the binomial expansion.
Hence, the sum is equal to 222.
Note: Students should note that the main trick to solve this question is to put x=1 in the expansion of (1+x)23 to get the desired answer otherwise it will be difficult to solve the given question.