Question
Question: Sum of odd terms is *A* and sum of even terms is *B* in the expansion of \((x + a)^{n}\), then...
Sum of odd terms is A and sum of even terms is B in the expansion of (x+a)n, then
A
AB=41(x−a)2n−(x+a)2n
B
2AB=(x+a)2n−(x−a)2n
C
4AB=(x+a)2n−(x−a)2n
D
None of these
Answer
4AB=(x+a)2n−(x−a)2n
Explanation
Solution
(x+a)n=n⥂C0xn+n⥂C1xn−1a1+n⥂C2xn−2a2+...+n⥂Cnxn−n.an=(xn+n⥂C2xn−2a2+..)+(n⥂C1xn−1a1+n⥂C3xn−3a3+....)=A+B.....(i)
Similarly, (x−a)n=A−B .....(ii)
From (i) and (ii), we get 4AB=(x+a)2n−(x−a)2n
Trick: Put n=1 in (x+a)n. Then, x+a=A+B.
Comparing both sides A=x,B=a.
Option (3) L.H.S. 4AB=4xa, R.H.S. (x+a)2−(x−a)2=4ax. i.e., L.H.S. = R.H.S