Solveeit Logo

Question

Question: Sum of maximum and minimum values of (sin<sup>–1</sup> x)<sup>4</sup> + (cos<sup>–1</sup> x)<sup>4<...

Sum of maximum and minimum values of

(sin–1 x)4 + (cos–1 x)4 is–

A

137π2128\frac{137\pi^{2}}{128}

B

π417\frac{\pi^{4}}{17}

C

17π416\frac{17\pi^{4}}{16}

D

137π4128\frac{137\pi^{4}}{128}

Answer

137π4128\frac{137\pi^{4}}{128}

Explanation

Solution

S=tan113+tan129+tan1433+....S = \tan^{- 1}\frac{1}{3} + \tan^{- 1}\frac{2}{9} + \tan^{- 1}\frac{4}{33} + ....\infty

tan12n11+22n1=tan12n2n11+2n.2n1\tan^{- 1}\frac{2^{n - 1}}{1 + 2^{2n - 1}} = \tan^{- 1}\frac{2^{n} - 2^{n - 1}}{1 + 2^{n}.2^{n - 1}}

= tan12ntan12n1\tan^{- 1}2^{n} - \tan^{- 1}2^{n - 1}

Sn = Sum of n term of the series

(tan12tan11)+(tan122tan12)+(tan123tan122)\left( \tan^{- 1}2 - \tan^{- 1}1 \right) + \left( \tan^{- 1}2^{2} - \tan^{- 1}2 \right) + \left( \tan^{- 1}2^{3} - \tan^{- 1}2^{2} \right)

…………. (tan12ntan12n1)\left( \tan^{- 1}2^{n} - \tan^{- 1}2^{n - 1} \right)

= tan–1 2n – tan–1 1

S=limxSn=limntan12nπ/4S = \lim_{x \rightarrow \infty}S_{n} = \lim_{n \rightarrow \infty}\tan^{–1}2^{n} - \pi/4

= π2π4=π4\frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4}