Solveeit Logo

Question

Mathematics Question on Binomial theorem

Sum of last 3030 coefficients in the binomial expansion of (1+x)59(1 + x)^{59} is

A

2292^{29}

B

2592^{59}

C

2582^{58}

D

2592292^{59} - 2^{29}

Answer

2582^{58}

Explanation

Solution

We have, (1+x)59(1+x)^{59} Sum of last 30 coefficient of the binomial expansion =59C30+59C31++59C59={ }^{59} C_{30}+{ }^{59} C_{31}+\ldots+{ }^{59} C_{59} We know that, 59C0+59C1+59C2++59C59=259{ }^{59} C_{0}+{ }^{59} C_{1}+{ }^{59} C_{2}+\ldots+{ }^{59} C_{59}= 2^{59} (59C0+59C59)+(59C1+59C58)+...\Rightarrow\left({ }^{59} C_{0}+{ }^{59} C_{59}\right)+\left({ }^{59} C_{1}+{ }^{59} C_{58}\right)+... +(59C29+59C30)=259+\left({ }^{59} C_{29}+{ }^{59} C_{30}\right)=2^{59} 2(59C59+59C58+...+59C31+59C30)=259\Rightarrow 2\left({ }^{59} C_{59}+{ }^{59} C_{58}+...+{ }^{59} C_{31}+{ }^{59} C_{30}\right)=2^{59} [nCr=nCnr]\left[\because{ }^{n} C_{r}={ }^{n} C_{n-r}\right] 59C30+59C31+...59C39=2592=258\Rightarrow{ }^{59} C_{30}+{ }^{59} C_{31}+...{ }^{59} C_{39}=\frac{2^{59}}{2}=2^{58} \therefore Sum of last 30 coefficient of the binomial expansion (1+x)59(1+x)^{59} is 2582^{58}.