Solveeit Logo

Question

Question: Sum of first 'n' terms of a series $a_1 + a_2 + ... + a_n$ is given by $S_n = \frac{n(n^2-1)(n+2)}{4...

Sum of first 'n' terms of a series a1+a2+...+ana_1 + a_2 + ... + a_n is given by Sn=n(n21)(n+2)4S_n = \frac{n(n^2-1)(n+2)}{4}, then the value of limnr=2n1ar\lim_{n \to \infty} \sum_{r=2}^{n} \frac{1}{a_r} is

A

4

B

2

C

14\frac{1}{4}

D

12\frac{1}{2}

Answer

14\frac{1}{4}

Explanation

Solution

The sum of the first 'n' terms of the series is given by Sn=n(n21)(n+2)4S_n = \frac{n(n^2-1)(n+2)}{4}. We can rewrite SnS_n as Sn=n(n1)(n+1)(n+2)4S_n = \frac{n(n-1)(n+1)(n+2)}{4}.

The nth term of the series, ana_n, for n2n \ge 2 is given by an=SnSn1a_n = S_n - S_{n-1}.

an=n(n1)(n+1)(n+2)4(n1)((n1)21)((n1)+2)4a_n = \frac{n(n-1)(n+1)(n+2)}{4} - \frac{(n-1)((n-1)^2-1)((n-1)+2)}{4}

an=n(n1)(n+1)(n+2)4(n1)(n22n)(n+1)4a_n = \frac{n(n-1)(n+1)(n+2)}{4} - \frac{(n-1)(n^2-2n)(n+1)}{4}

an=n(n1)(n+1)(n+2)4n(n1)(n2)(n+1)4a_n = \frac{n(n-1)(n+1)(n+2)}{4} - \frac{n(n-1)(n-2)(n+1)}{4}

Factor out the common terms n(n1)(n+1)4\frac{n(n-1)(n+1)}{4}:

an=n(n1)(n+1)4[(n+2)(n2)]a_n = \frac{n(n-1)(n+1)}{4} [(n+2) - (n-2)]

an=n(n1)(n+1)4[n+2n+2]a_n = \frac{n(n-1)(n+1)}{4} [n+2 - n+2]

an=n(n1)(n+1)4[4]a_n = \frac{n(n-1)(n+1)}{4} [4]

an=n(n1)(n+1)a_n = n(n-1)(n+1) for n2n \ge 2.

The sum we need to evaluate is r=2n1ar\sum_{r=2}^{n} \frac{1}{a_r}. For r2r \ge 2, ar=r(r1)(r+1)a_r = r(r-1)(r+1).

We need to evaluate the sum Tn=r=2n1r(r1)(r+1)T_n = \sum_{r=2}^{n} \frac{1}{r(r-1)(r+1)}.

We use partial fraction decomposition for the term 1(r1)r(r+1)\frac{1}{(r-1)r(r+1)}.

1(r1)r1r(r+1)=(r+1)(r1)(r1)r(r+1)=2(r1)r(r+1)\frac{1}{(r-1)r} - \frac{1}{r(r+1)} = \frac{(r+1) - (r-1)}{(r-1)r(r+1)} = \frac{2}{(r-1)r(r+1)}.

So, 1(r1)r(r+1)=12[1(r1)r1r(r+1)]\frac{1}{(r-1)r(r+1)} = \frac{1}{2} \left[ \frac{1}{(r-1)r} - \frac{1}{r(r+1)} \right].

Now we can write the sum TnT_n:

Tn=r=2n12[1(r1)r1r(r+1)]T_n = \sum_{r=2}^{n} \frac{1}{2} \left[ \frac{1}{(r-1)r} - \frac{1}{r(r+1)} \right]

Tn=12r=2n[1(r1)r1r(r+1)]T_n = \frac{1}{2} \sum_{r=2}^{n} \left[ \frac{1}{(r-1)r} - \frac{1}{r(r+1)} \right]

This is a telescoping sum. The sum is 12r=2n[g(r)g(r+1)]\frac{1}{2} \sum_{r=2}^{n} [g(r) - g(r+1)].

Summing these terms, the intermediate terms cancel out:

r=2n[g(r)g(r+1)]=[g(2)g(3)]+[g(3)g(4)]+...+[g(n)g(n+1)]=g(2)g(n+1)\sum_{r=2}^{n} [g(r) - g(r+1)] = [g(2) - g(3)] + [g(3) - g(4)] + ... + [g(n) - g(n+1)] = g(2) - g(n+1).

g(2)=1(21)2=112=12g(2) = \frac{1}{(2-1)2} = \frac{1}{1 \cdot 2} = \frac{1}{2}.

g(n+1)=1((n+1)1)(n+1)=1n(n+1)g(n+1) = \frac{1}{((n+1)-1)(n+1)} = \frac{1}{n(n+1)}.

So, the sum Tn=12[g(2)g(n+1)]=12[121n(n+1)]T_n = \frac{1}{2} [g(2) - g(n+1)] = \frac{1}{2} \left[ \frac{1}{2} - \frac{1}{n(n+1)} \right].

We need to find the limit of this sum as nn \to \infty:

limnTn=limn12[121n(n+1)]\lim_{n \to \infty} T_n = \lim_{n \to \infty} \frac{1}{2} \left[ \frac{1}{2} - \frac{1}{n(n+1)} \right].

As nn \to \infty, n(n+1)n(n+1) \to \infty, so 1n(n+1)0\frac{1}{n(n+1)} \to 0.

limnTn=12[120]=1212=14\lim_{n \to \infty} T_n = \frac{1}{2} \left[ \frac{1}{2} - 0 \right] = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}.

The final answer is 14\frac{1}{4}.