Solveeit Logo

Question

Question: Sum of 1/(sin2^(n)a) upto n terms...

Sum of 1/(sin2^(n)a) upto n terms

Answer

cot a - cot 2^n a

Explanation

Solution

To find the sum of the series Sn=k=1n1sin(2ka)S_n = \sum_{k=1}^{n} \frac{1}{\sin(2^k a)}, we use a trigonometric identity that allows for a telescopic sum.

Consider the identity: cotxcot2x=cosxsinxcos2xsin2x\cot x - \cot 2x = \frac{\cos x}{\sin x} - \frac{\cos 2x}{\sin 2x}

We know that sin2x=2sinxcosx\sin 2x = 2 \sin x \cos x and cos2x=2cos2x1\cos 2x = 2 \cos^2 x - 1.

Substitute these into the expression: cotxcot2x=cosxsinx2cos2x12sinxcosx\cot x - \cot 2x = \frac{\cos x}{\sin x} - \frac{2 \cos^2 x - 1}{2 \sin x \cos x}

To combine these terms, find a common denominator: cotxcot2x=2cos2x2sinxcosx2cos2x12sinxcosx\cot x - \cot 2x = \frac{2 \cos^2 x}{2 \sin x \cos x} - \frac{2 \cos^2 x - 1}{2 \sin x \cos x} =2cos2x(2cos2x1)2sinxcosx= \frac{2 \cos^2 x - (2 \cos^2 x - 1)}{2 \sin x \cos x} =2cos2x2cos2x+12sinxcosx= \frac{2 \cos^2 x - 2 \cos^2 x + 1}{2 \sin x \cos x} =12sinxcosx= \frac{1}{2 \sin x \cos x} =1sin2x= \frac{1}{\sin 2x}

So, the identity is 1sin2x=cotxcot2x\frac{1}{\sin 2x} = \cot x - \cot 2x.

Now, let's apply this identity to the general term of our series, Tk=1sin(2ka)T_k = \frac{1}{\sin(2^k a)}.

To match the form 1sin2x\frac{1}{\sin 2x}, we set 2x=2ka2x = 2^k a.

This implies x=2ka2=2k1ax = \frac{2^k a}{2} = 2^{k-1} a.

Substituting this into the identity: Tk=1sin(2ka)=cot(2k1a)cot(2ka)T_k = \frac{1}{\sin(2^k a)} = \cot(2^{k-1} a) - \cot(2^k a)

Now, we can write out the terms of the sum SnS_n:

For k=1k=1: T1=1sin(2a)=cot(211a)cot(21a)=cot(a)cot(2a)T_1 = \frac{1}{\sin(2a)} = \cot(2^{1-1} a) - \cot(2^1 a) = \cot(a) - \cot(2a)

For k=2k=2: T2=1sin(22a)=cot(221a)cot(22a)=cot(2a)cot(4a)T_2 = \frac{1}{\sin(2^2 a)} = \cot(2^{2-1} a) - \cot(2^2 a) = \cot(2a) - \cot(4a)

For k=3k=3: T3=1sin(23a)=cot(231a)cot(23a)=cot(4a)cot(8a)T_3 = \frac{1}{\sin(2^3 a)} = \cot(2^{3-1} a) - \cot(2^3 a) = \cot(4a) - \cot(8a) ... For k=nk=n: Tn=1sin(2na)=cot(2n1a)cot(2na)T_n = \frac{1}{\sin(2^n a)} = \cot(2^{n-1} a) - \cot(2^n a)

Now, sum these terms: Sn=T1+T2+T3++TnS_n = T_1 + T_2 + T_3 + \dots + T_n Sn=(cot(a)cot(2a))+(cot(2a)cot(4a))+(cot(4a)cot(8a))++(cot(2n1a)cot(2na))S_n = (\cot(a) - \cot(2a)) + (\cot(2a) - \cot(4a)) + (\cot(4a) - \cot(8a)) + \dots + (\cot(2^{n-1} a) - \cot(2^n a))

This is a telescopic series, meaning that intermediate terms cancel out. Sn=cot(a)cot(2na)S_n = \cot(a) - \cot(2^n a)

The sum of the series up to n terms is cot(a)cot(2na)\cot(a) - \cot(2^n a).