Question
Question: Sum of 1/(sin2^(n)a) upto n terms...
Sum of 1/(sin2^(n)a) upto n terms
cot a - cot 2^n a
Solution
To find the sum of the series Sn=∑k=1nsin(2ka)1, we use a trigonometric identity that allows for a telescopic sum.
Consider the identity: cotx−cot2x=sinxcosx−sin2xcos2x
We know that sin2x=2sinxcosx and cos2x=2cos2x−1.
Substitute these into the expression: cotx−cot2x=sinxcosx−2sinxcosx2cos2x−1
To combine these terms, find a common denominator: cotx−cot2x=2sinxcosx2cos2x−2sinxcosx2cos2x−1 =2sinxcosx2cos2x−(2cos2x−1) =2sinxcosx2cos2x−2cos2x+1 =2sinxcosx1 =sin2x1
So, the identity is sin2x1=cotx−cot2x.
Now, let's apply this identity to the general term of our series, Tk=sin(2ka)1.
To match the form sin2x1, we set 2x=2ka.
This implies x=22ka=2k−1a.
Substituting this into the identity: Tk=sin(2ka)1=cot(2k−1a)−cot(2ka)
Now, we can write out the terms of the sum Sn:
For k=1: T1=sin(2a)1=cot(21−1a)−cot(21a)=cot(a)−cot(2a)
For k=2: T2=sin(22a)1=cot(22−1a)−cot(22a)=cot(2a)−cot(4a)
For k=3: T3=sin(23a)1=cot(23−1a)−cot(23a)=cot(4a)−cot(8a) ... For k=n: Tn=sin(2na)1=cot(2n−1a)−cot(2na)
Now, sum these terms: Sn=T1+T2+T3+⋯+Tn Sn=(cot(a)−cot(2a))+(cot(2a)−cot(4a))+(cot(4a)−cot(8a))+⋯+(cot(2n−1a)−cot(2na))
This is a telescopic series, meaning that intermediate terms cancel out. Sn=cot(a)−cot(2na)
The sum of the series up to n terms is cot(a)−cot(2na).