Solveeit Logo

Question

Question: $\left(2+\sqrt{5}\right)^{\frac{1}{3}}+\left(2-\sqrt{5}\right)^{\frac{1}{3}}$...

(2+5)13+(25)13\left(2+\sqrt{5}\right)^{\frac{1}{3}}+\left(2-\sqrt{5}\right)^{\frac{1}{3}}

Answer

1

Explanation

Solution

Let x=(2+5)13+(25)13x = \left(2+\sqrt{5}\right)^{\frac{1}{3}}+\left(2-\sqrt{5}\right)^{\frac{1}{3}}. Cube both sides using the formula (a+b)3=a3+b3+3ab(a+b)(a+b)^3 = a^3 + b^3 + 3ab(a+b). Let a=(2+5)13a = \left(2+\sqrt{5}\right)^{\frac{1}{3}} and b=(25)13b = \left(2-\sqrt{5}\right)^{\frac{1}{3}}. Then x3=a3+b3+3ab(a+b)x^3 = a^3 + b^3 + 3ab(a+b).

a3=((2+5)13)3=2+5a^3 = \left(\left(2+\sqrt{5}\right)^{\frac{1}{3}}\right)^3 = 2+\sqrt{5} b3=((25)13)3=25b^3 = \left(\left(2-\sqrt{5}\right)^{\frac{1}{3}}\right)^3 = 2-\sqrt{5} ab=(2+5)13(25)13=((2+5)(25))13=(45)13=(1)13=1ab = \left(2+\sqrt{5}\right)^{\frac{1}{3}} \left(2-\sqrt{5}\right)^{\frac{1}{3}} = \left((2+\sqrt{5})(2-\sqrt{5})\right)^{\frac{1}{3}} = (4 - 5)^{\frac{1}{3}} = (-1)^{\frac{1}{3}} = -1

Substituting these values into the cubed equation: x3=(2+5)+(25)+3(1)(x)x^3 = (2+\sqrt{5}) + (2-\sqrt{5}) + 3(-1)(x) x3=43xx^3 = 4 - 3x Rearrange the equation to form a cubic equation: x3+3x4=0x^3 + 3x - 4 = 0

We need to find the real root(s) of this equation. We can test integer divisors of the constant term (-4), which are ±1,±2,±4\pm 1, \pm 2, \pm 4. Let's test x=1x=1: 13+3(1)4=1+34=01^3 + 3(1) - 4 = 1 + 3 - 4 = 0. So, x=1x=1 is a root.

We can factor the cubic polynomial using the root x=1x=1. (x1)(x-1) is a factor. Using polynomial division or synthetic division: (x3+3x4)÷(x1)=x2+x+4(x^3 + 3x - 4) \div (x-1) = x^2 + x + 4. So, the equation is (x1)(x2+x+4)=0(x-1)(x^2 + x + 4) = 0. The roots are x=1x=1 or x2+x+4=0x^2 + x + 4 = 0. Consider the quadratic equation x2+x+4=0x^2 + x + 4 = 0. The discriminant is Δ=b24ac=124(1)(4)=116=15\Delta = b^2 - 4ac = 1^2 - 4(1)(4) = 1 - 16 = -15. Since the discriminant is negative, the quadratic equation has two complex conjugate roots. The roots are x=1±152=1±i152x = \frac{-1 \pm \sqrt{-15}}{2} = \frac{-1 \pm i\sqrt{15}}{2}. The only real root of x3+3x4=0x^3 + 3x - 4 = 0 is x=1x=1.

Since the expression (2+5)13+(25)13\left(2+\sqrt{5}\right)^{\frac{1}{3}}+\left(2-\sqrt{5}\right)^{\frac{1}{3}} must be a real number, its value is the real root of the cubic equation, which is 1.