Solveeit Logo

Question

Question: ∆­<sub>1</sub> = \(\left| \begin{matrix} x & b & b \\ a & x & b \\ a & a & x \end{matrix} \right|\)&...

∆­1 = xbbaxbaax\left| \begin{matrix} x & b & b \\ a & x & b \\ a & a & x \end{matrix} \right|&∆2 = xbax\left| \begin{matrix} x & b \\ a & x \end{matrix} \right|, then –

A

1 = 3 (∆2)2

B

ddx\frac{d}{dx} (∆1) = 3∆2

C

ddx\frac{d}{dx} (∆1) = 3 (∆2)2

D

1­ = 3(∆2)3/2

Answer

ddx\frac{d}{dx} (∆1) = 3∆2

Explanation

Solution

Q ddx\frac{d}{dx} (∆1) = 100axbaax\left| \begin{matrix} 1 & 0 & 0 \\ a & x & b \\ a & a & x \end{matrix} \right| + xbb010aax\left| \begin{matrix} x & b & b \\ 0 & 1 & 0 \\ a & a & x \end{matrix} \right|+ xbbaxb001\left| \begin{matrix} x & b & b \\ a & x & b \\ 0 & 0 & 1 \end{matrix} \right|

= 3 xbax\left| \begin{matrix} x & b \\ a & x \end{matrix} \right| = 3∆2