Question
Question: ∆<sub>1</sub> = \(\left| \begin{matrix} x & b & b \\ a & x & b \\ a & a & x \end{matrix} \right|\)&...
∆1 = xaabxabbx&∆2 = xabx, then –
A
∆1 = 3 (∆2)2
B
dxd (∆1) = 3∆2
C
dxd (∆1) = 3 (∆2)2
D
∆1 = 3(∆2)3/2
Answer
dxd (∆1) = 3∆2
Explanation
Solution
Q dxd (∆1) = 1aa0xa0bx + x0ab1ab0x+ xa0bx0bb1
= 3 xabx = 3∆2